Problem 1. Prove that for all integers $a, b \in \mathbb{Z}$ we have

$$
(a b=0) \quad \Longrightarrow \quad(a=0 \text { or } b=0)
$$

You may assume the following axioms: (1) For all $x, y, z \in \mathbb{Z}$, if $x<y$ and $z>0$ then $x z<y z$. (2) For all $x, y, z \in \mathbb{Z}$, if $x<y$ and $z<0$ then $x z>y z$. (3) $0<1$.

Proof. We will prove the contrapositive statement, that

$$
(a \neq 0 \text { and } b \neq 0) \quad \Longrightarrow \quad(a b \neq 0)
$$

So assume that $a \neq 0$ and $b \neq 0$. There are four cases:

- Case $a>0$ and $b>0$. If we multiply both sides of $a>0$ by b then axiom (1) says that $a b>0 b=0$, hence $a b \neq 0$.
- Case $a>0$ and $b<0$. If we multiply both sides of $a>0$ by b then axiom (2) says that $a b<0 b=0$, hence $a b \neq 0$.
- Case $a<0$ and $b>0$. If we multiply both sides of $a<0$ by b then axiom (1) says that $a b<0 b=0$, hence $a b \neq 0$.
- Case $a<0$ and $b<0$. If we multiply both sides of $a<0$ by b then axiom (2) says that $a b>0 b=0$, hence $a b \neq 0$.

Problem 2. (Multiplicative Cancellation)

(a) Given $a, b, c \in \mathbb{Z}$ with $c \neq 0$, prove that $(a c=b c) \Rightarrow(a=b)$.
(b) Given $a, b \in \mathbb{Z}$ with $a \mid b$ and $b \mid a$, prove that $a= \pm b$.

Proof. For part (a), assume that $a c=b c$ with $c \neq 0$. Then we have

$$
\begin{aligned}
a c & =b c \\
a c-b c & =0 \\
(a-b) c & =0
\end{aligned}
$$

Since $c \neq 0$, Problem 1 tells us that $a-b=0$, hence $a=b$. For part (b), assume that $a \mid b$ and $b \mid a$, i.e. we have $a=k b$ and $b=\ell a$ for some integers $k, \ell \in \mathbb{Z}$. Then we have

$$
\begin{aligned}
a & =k b \\
a & =k \ell a \\
a-k \ell a & =0 \\
(1-k \ell) a & =0 .
\end{aligned}
$$

If $a=0$ then we also have $b=0$ and there is nothing to show, so assume that $a \neq 0$. Then Problem 1 implies that $1-k \ell=0$, or $k \ell=1$. From this it follows that $k=\ell=1$ (in which case $a=b$) or $k=\ell=-1$ (in which case $a=-b$).

The remaining problems will use the following notation. Fix a nonzero integer $0 \neq n \in \mathbb{Z}$. Then for all integers $a, b \in \mathbb{Z}$ we define

$$
" a \equiv b \quad(\bmod n) " \Longleftrightarrow n \mid(a-b) .
$$

Problem 3. Given $0 \neq n \in \mathbb{Z}$, prove that is it safe to "add" and "multiply" numbers modulo n. That is, given $a \equiv a^{\prime}(\bmod n)$ and $b \equiv b^{\prime}(\bmod n)$, prove that
(a) $a+b \equiv a^{\prime}+b^{\prime}(\bmod n)$
(b) $a b \equiv a^{\prime} b^{\prime}(\bmod n)$
[Hint: We have $a=a^{\prime}+k n$ and $b=b^{\prime}+\ell n$ for some $k, \ell \in \mathbb{Z}$.]

Proof. Assume that $a \equiv a^{\prime}(\bmod n)$ and $b \equiv b^{\prime}(\bmod n)$. By definition this means that $n \mid\left(a-a^{\prime}\right)$ and $n \mid\left(b-b^{\prime}\right)$ and so we can write $a=a^{\prime}+k n$ and $b=b^{\prime}+\ell n$ for some $k, \ell \in \mathbb{Z}$.

For part (a), note that

$$
\begin{aligned}
a+b & =\left(a^{\prime}+k n\right)+\left(b^{\prime}+\ell n\right) \\
a+b & =\left(a^{\prime}+b^{\prime}\right)+(k+\ell) n \\
(a+b)-\left(a^{\prime}+b^{\prime}\right) & =(k+\ell) n .
\end{aligned}
$$

We conclude that $n \mid\left((a+b)-\left(a^{\prime}+b^{\prime}\right)\right)$ and hence $a+b \equiv a^{\prime}+b^{\prime}(\bmod n)$.
For part (b), note that

$$
\begin{aligned}
a b & =\left(a^{\prime}+k n\right)\left(b^{\prime}+\ell n\right) \\
a b & =a^{\prime} b^{\prime}+b^{\prime} k n+a^{\prime} \ell n+k \ell n^{2} \\
a b & =a^{\prime} b^{\prime}+\left(b^{\prime} k+a^{\prime} \ell+k \ell n\right) n \\
a b-a^{\prime} b^{\prime} & =\left(b^{\prime} k+a^{\prime} \ell+k \ell n\right) n .
\end{aligned}
$$

We conclude that $n \mid\left(a b-a^{\prime} b^{\prime}\right)$ and hence $a b \equiv a^{\prime} b^{\prime}(\bmod n)$.

Problem 4.

(a) Consider $a, b, d \in \mathbb{Z}$ with $d \mid a b$. If $\operatorname{gcd}(d, a)=1$ prove that $d \mid b$.
(b) Consider $a, b, c, n \in \mathbb{Z}$ with $0 \neq n$ and $\operatorname{gcd}(\mathrm{c}, \mathrm{n})=1$. Prove that

$$
a c \equiv b c \quad(\bmod n) \quad \Longrightarrow \quad a \equiv b \quad(\bmod n) .
$$

(c) Give a specific example to show that the result of part (b) fails when $\operatorname{gcd}(c, n) \neq 1$.

Proof. For part (a), assume that $d \mid a b$ (say $a b=d k$ for $k \in \mathbb{Z}$) and $\operatorname{gcd}(d, a)=1$. Since $\operatorname{gcd}(d, a)=1$, by Bézout's Identity there exist $x, y \in \mathbb{Z}$ such that $1=d x+a y$. Multiplying both sides by b then gives

$$
\begin{aligned}
& 1=d x+a y \\
& b=d b x+a b y \\
& b=d b x+d k y \\
& b=d(b x+k y) .
\end{aligned}
$$

We conclude that $d \mid b$.
For part (b) assume that $a c \equiv b c(\bmod n)$ for some $0 \neq n$ and assume that $\operatorname{gcd}(c, n)=1$. Then by definition we have $n \mid(a c-b c)$ hence $n \mid(a-b) c$. Since $\operatorname{gcd}(c, n)=1$ we use part (a) to conclude that $n \mid(a-b)$, hence $a \equiv b(\bmod n)$.

For part (c) we will give an example in which cancellation does not work. Consider $(a, b, c, n)=(1,3,2,4)$. Then we have a true statement

$$
1 \cdot 2 \equiv 3 \cdot 2 \quad(\bmod 4),
$$

but if we try to cancel the 2 from both sides we get

$$
1 \equiv 3 \quad(\bmod 4),
$$

which is false. The reason we can't cancel the 2 is because $\operatorname{gcd}(2,4) \neq 1$.

Problem 5. (Generalization of Euclid's Lemma) Let $p \in \mathbb{Z}$ be prime. Use induction to prove that for all integers $n \geq 2$ the following holds: "Given any set of n integers $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ such that $p \mid a_{1} a_{2} \cdots a_{n}$, there exists some $1 \leq i \leq n$ such that $p \mid a_{i}$." [Hint: Call the statement $P(n)$. Prove that (or say why) $P(2)=T$. Prove that for all $k \geq 2$ we have $P(k) \Rightarrow P(k+1)$. (Your proof will begin: "Fix $k \geq 2$ and assume for induction that $P(k)=T$. In this case we want to show that $P(k+1)=T$. So consider any $k+1$ integers $a_{1}, a_{2}, \ldots, a_{k+1} \in \mathbb{Z}$ such that $\left.\left.p \mid a_{1} a_{2} \cdots a_{k+1} . "\right)\right]$

Proof. For all $n \geq 2$ we define the statement $P(n):=$ "Given any set of n integers $a_{1}, a_{2}, \ldots, a_{n} \in$ \mathbb{Z} such that $p \mid a_{1} a_{2} \cdots a_{n}$, there exists some $1 \leq i \leq n$ such that $p \mid a_{i}$." We want to show that $P(n)=T$ for all $n \geq 2$.

First we note that the base case $P(2)$ is just the statement of Euclid's Lemma, which we know is true.

Now fix an arbitrary $k \geq 2$ and assume for induction that $P(k)=T$. In this case we want to show that $P(k+1)$ is also true. So consider any collection $a_{1}, a_{2}, \ldots, a_{k+1} \in \mathbb{Z}$ of $k+1$ integers and assume that $p \mid a_{1} a_{2} \cdots a_{k+1}$. In this case we want to show that $p \mid a_{i}$ for some $1 \leq i \leq k+1$. First note that

$$
p \mid\left(a_{1} a_{2} \cdots a_{k}\right) a_{k+1},
$$

hence Euclid's Lemma (the statement $P(2)$) implies that $p \mid a_{k+1}$, in which case we're done, or $p \mid a_{1} a_{2} \cdots a_{k}$. But in this second case, the true statement $P(k)$ implies that $p \mid a_{i}$ for some $1 \leq i \leq k$. Putting these together we conclude that $p \mid a_{i}$ for some $1 \leq i \leq k+1$. Hence $P(k+1)=T$.

By induction, we conclude that $P(n)=T$ for all $n \geq 2$.

