Math 230 E Fall 2013
Homework 4 Drew Armstrong

Problem 1. Prove that for all integers a,b € Z we have
(ab=0) = (a=0or b=0).

You may assume the following axioms: (1) For all z,y,z € Z, if x < y and z > 0 then zz < yz.
(2) For all z,y,z € Z, if x <y and z < 0 then zz > yz. (3) 0 < 1.

Proof. We will prove the contrapositive statement, that
(a#0 and b#0) = (ab#0).

So assume that a # 0 and b # 0. There are four cases:

e Case a > 0 and b > 0. If we multiply both sides of a > 0 by b then axiom (1) says
that ab > 0b = 0, hence ab # 0.

e Case a > 0 and b < 0. If we multiply both sides of a > 0 by b then axiom (2) says
that ab < 0b = 0, hence ab # 0.

e Case a < 0 and b > 0. If we multiply both sides of a < 0 by b then axiom (1) says
that ab < 0b = 0, hence ab # 0.

e Case a < 0 and b < 0. If we multiply both sides of a < 0 by b then axiom (2) says
that ab > 0b = 0, hence ab # 0.

O

Problem 2. (Multiplicative Cancellation)

(a) Given a,b,c € Z with ¢ # 0, prove that (ac = bc) = (a = b).
(b) Given a,b € Z with alb and b|a, prove that a = £b.

Proof. For part (a), assume that ac = be with ¢ # 0. Then we have

ac = be
ac—bc=10
(@ —b)c=0.

Since ¢ # 0, Problem 1 tells us that a — b = 0, hence a = b. For part (b), assume that a|b and
bla, i.e. we have a = kb and b = fa for some integers k, ¢ € Z. Then we have

a=kb

a = kla
a—kla=0
(1 —-Fkl)a=0.

If a = 0 then we also have b = 0 and there is nothing to show, so assume that a # 0. Then
Problem 1 implies that 1 — k¢ = 0, or k¢ = 1. From this it follows that k = ¢ = 1 (in which
case a = b) or k = ¢ = —1 (in which case a = —b). O



The remaining problems will use the following notation. Fix a nonzero integer 0 # n € Z. Then
for all integers a,b € Z we define

“a=b (modn)” <= mn|(a—0D).

Problem 3. Given 0 # n € Z, prove that is it safe to “add” and “multiply” numbers modulo
n. That is, given a = a’ (mod n) and b =" (mod n), prove that

(a) a+b=d 4+ (mod n)

(b) ab=a't/ (mod n)
[Hint: We have a = a’ + kn and b = b' + ¢n for some k,{ € Z.]

Proof. Assume that a = da/ (mod n) and b = ¥ (mod n). By definition this means that
n|(a —a’) and n|(b—b") and so we can write a = @’ + kn and b = V' + ¢n for some k,l € 7.
For part (a), note that

a+b=(a +kn)+ (b +In)
at+b=(d+b)+ (k+0On
(a+b) — (a' +b) = (k+O)n.

We conclude that n|((a +b) — (o’ +¥')) and hence a + b =d' + V' (mod n).
For part (b), note that

ab= (a’ + kn)(b' + tn)
ab = a't/ + b'kn + d'tn + kin?
ab=a't/ + (b'k + a'l + kén)n
ab—a't = (V'k + a'l + kin)n.
We conclude that n|(ab — a'b’) and hence ab = a'b’ (mod n). O

Problem 4.

(a) Consider a,b,d € Z with d|ab. If ged(d, a) = 1 prove that d|b.
(b) Consider a,b,c,n € Z with 0 # n and ged(c,n) = 1. Prove that

ac=bc (modn) = a=0b (modn).

(c) Give a specific example to show that the result of part (b) fails when ged(c,n) # 1.

Proof. For part (a), assume that dlab (say ab = dk for k € Z) and ged(d,a) = 1. Since
ged(d,a) = 1, by Bézout’s Identity there exist x,y € Z such that 1 = dx + ay. Multiplying
both sides by b then gives

1=dx+ay

b = dbx + aby

b = dbx + dky

b= d(bx + ky).

We conclude that d|b.

For part (b) assume that ac = be (mod n) for some 0 # n and assume that ged(c,n) = 1.
Then by definition we have n|(ac — bc) hence n|(a — b)c. Since ged(c,n) = 1 we use part (a)
to conclude that n|(a — b), hence a = b (mod n).



For part (c) we will give an example in which cancellation does not work. Consider
(a,b,e,m) =(1,3,2,4). Then we have a true statement

1-2=3-2 (mod 4),
but if we try to cancel the 2 from both sides we get
1=3 (mod 4),

which is false. The reason we can’t cancel the 2 is because ged(2,4) # 1. U

Problem 5. (Generalization of Euclid’s Lemma) Let p € Z be prime. Use induc-
tion to prove that for all integers n > 2 the following holds: “Given any set of n integers
ai,ag,...,a, € Z such that plajas - - - a,, there exists some 1 < ¢ < n such that pla;.” [Hint:
Call the statement P(n). Prove that (or say why) P(2) = 7. Prove that for all £ > 2 we
have P(k) = P(k+ 1). (Your proof will begin: “Fix k£ > 2 and assume for induction that
P(k) =T. In this case we want to show that P(k+ 1) = 7. So consider any k + 1 integers
a,ag,...,ax+1 € Z such that plajag - - ags1.”)]

Proof. For alln > 2 we define the statement P(n) :=“Given any set of n integers aj, ag, ..., a, €
Z such that plajas - - - ay, there exists some 1 < i < n such that p|a;.” We want to show that
P(n) =T for all n > 2.

First we note that the base case P(2) is just the statement of Euclid’s Lemma, which we
know is true.

Now fix an arbitrary k& > 2 and assume for induction that P(k) = T. In this case we
want to show that P(k + 1) is also true. So consider any collection aq,as,...,ar11 € Z of
k+1 integers and assume that plajas - - - axy1. In this case we want to show that p|a; for some
1 <4< k+ 1. First note that

pl(araz - - ak)agi1,
hence Euclid’s Lemma (the statement P(2)) implies that p|axy1, in which case we’re done,
or plajas - --ak. But in this second case, the true statement P(k) implies that p|a; for some
1 < i < k. Putting these together we conclude that p|a; for some 1 < i < k + 1. Hence
Pk+1)=T.
By induction, we conclude that P(n) =T for all n > 2. O



