
Math 230 E Fall 2013
Homework 4 Drew Armstrong

Problem 1. Prove that for all integers a, b ∈ Z we have

(ab = 0) =⇒ (a = 0 or b = 0).

You may assume the following axioms: (1) For all x, y, z ∈ Z, if x < y and z > 0 then xz < yz.
(2) For all x, y, z ∈ Z, if x < y and z < 0 then xz > yz. (3) 0 < 1.

Proof. We will prove the contrapositive statement, that

(a 6= 0 and b 6= 0) =⇒ (ab 6= 0).

So assume that a 6= 0 and b 6= 0. There are four cases:

• Case a > 0 and b > 0. If we multiply both sides of a > 0 by b then axiom (1) says
that ab > 0b = 0, hence ab 6= 0.
• Case a > 0 and b < 0. If we multiply both sides of a > 0 by b then axiom (2) says

that ab < 0b = 0, hence ab 6= 0.
• Case a < 0 and b > 0. If we multiply both sides of a < 0 by b then axiom (1) says

that ab < 0b = 0, hence ab 6= 0.
• Case a < 0 and b < 0. If we multiply both sides of a < 0 by b then axiom (2) says

that ab > 0b = 0, hence ab 6= 0.

�

Problem 2. (Multiplicative Cancellation)

(a) Given a, b, c ∈ Z with c 6= 0, prove that (ac = bc)⇒ (a = b).
(b) Given a, b ∈ Z with a|b and b|a, prove that a = ±b.

Proof. For part (a), assume that ac = bc with c 6= 0. Then we have

ac = bc

ac− bc = 0

(a− b)c = 0.

Since c 6= 0, Problem 1 tells us that a− b = 0, hence a = b. For part (b), assume that a|b and
b|a, i.e. we have a = kb and b = `a for some integers k, ` ∈ Z. Then we have

a = kb

a = k`a

a− k`a = 0

(1− k`)a = 0.

If a = 0 then we also have b = 0 and there is nothing to show, so assume that a 6= 0. Then
Problem 1 implies that 1 − k` = 0, or k` = 1. From this it follows that k = ` = 1 (in which
case a = b) or k = ` = −1 (in which case a = −b). �



The remaining problems will use the following notation. Fix a nonzero integer 0 6= n ∈ Z. Then
for all integers a, b ∈ Z we define

“a ≡ b (mod n)” ⇐⇒ n|(a− b).

Problem 3. Given 0 6= n ∈ Z, prove that is it safe to “add” and “multiply” numbers modulo
n. That is, given a ≡ a′ (mod n) and b ≡ b′ (mod n), prove that

(a) a + b ≡ a′ + b′ (mod n)
(b) ab ≡ a′b′ (mod n)

[Hint: We have a = a′ + kn and b = b′ + `n for some k, ` ∈ Z.]

Proof. Assume that a ≡ a′ (mod n) and b ≡ b′ (mod n). By definition this means that
n|(a− a′) and n|(b− b′) and so we can write a = a′ + kn and b = b′ + `n for some k, ` ∈ Z.

For part (a), note that

a + b = (a′ + kn) + (b′ + `n)

a + b = (a′ + b′) + (k + `)n

(a + b)− (a′ + b′) = (k + `)n.

We conclude that n|((a + b)− (a′ + b′)) and hence a + b ≡ a′ + b′ (mod n).
For part (b), note that

ab = (a′ + kn)(b′ + `n)

ab = a′b′ + b′kn + a′`n + k`n2

ab = a′b′ + (b′k + a′` + k`n)n

ab− a′b′ = (b′k + a′` + k`n)n.

We conclude that n|(ab− a′b′) and hence ab ≡ a′b′ (mod n). �

Problem 4.

(a) Consider a, b, d ∈ Z with d|ab. If gcd(d, a) = 1 prove that d|b.
(b) Consider a, b, c, n ∈ Z with 0 6= n and gcd(c,n) = 1. Prove that

ac ≡ bc (mod n) =⇒ a ≡ b (mod n).

(c) Give a specific example to show that the result of part (b) fails when gcd(c, n) 6= 1.

Proof. For part (a), assume that d|ab (say ab = dk for k ∈ Z) and gcd(d, a) = 1. Since
gcd(d, a) = 1, by Bézout’s Identity there exist x, y ∈ Z such that 1 = dx + ay. Multiplying
both sides by b then gives

1 = dx + ay

b = dbx + aby

b = dbx + dky

b = d(bx + ky).

We conclude that d|b.
For part (b) assume that ac ≡ bc (mod n) for some 0 6= n and assume that gcd(c, n) = 1.

Then by definition we have n|(ac − bc) hence n|(a − b)c. Since gcd(c, n) = 1 we use part (a)
to conclude that n|(a− b), hence a ≡ b (mod n).



For part (c) we will give an example in which cancellation does not work. Consider
(a, b, c, n) = (1, 3, 2, 4). Then we have a true statement

1 · 2 ≡ 3 · 2 (mod 4),

but if we try to cancel the 2 from both sides we get

1 ≡ 3 (mod 4),

which is false. The reason we can’t cancel the 2 is because gcd(2, 4) 6= 1. �

Problem 5. (Generalization of Euclid’s Lemma) Let p ∈ Z be prime. Use induc-
tion to prove that for all integers n ≥ 2 the following holds: “Given any set of n integers
a1, a2, . . . , an ∈ Z such that p|a1a2 · · · an, there exists some 1 ≤ i ≤ n such that p|ai.” [Hint:
Call the statement P (n). Prove that (or say why) P (2) = T . Prove that for all k ≥ 2 we
have P (k) ⇒ P (k + 1). (Your proof will begin: “Fix k ≥ 2 and assume for induction that
P (k) = T . In this case we want to show that P (k + 1) = T . So consider any k + 1 integers
a1, a2, . . . , ak+1 ∈ Z such that p|a1a2 · · · ak+1.”)]

Proof. For all n ≥ 2 we define the statement P (n) :=“Given any set of n integers a1, a2, . . . , an ∈
Z such that p|a1a2 · · · an, there exists some 1 ≤ i ≤ n such that p|ai.” We want to show that
P (n) = T for all n ≥ 2.

First we note that the base case P (2) is just the statement of Euclid’s Lemma, which we
know is true.

Now fix an arbitrary k ≥ 2 and assume for induction that P (k) = T . In this case we
want to show that P (k + 1) is also true. So consider any collection a1, a2, . . . , ak+1 ∈ Z of
k+1 integers and assume that p|a1a2 · · · ak+1. In this case we want to show that p|ai for some
1 ≤ i ≤ k + 1. First note that

p|(a1a2 · · · ak)ak+1,

hence Euclid’s Lemma (the statement P (2)) implies that p|ak+1, in which case we’re done,
or p|a1a2 · · · ak. But in this second case, the true statement P (k) implies that p|ai for some
1 ≤ i ≤ k. Putting these together we conclude that p|ai for some 1 ≤ i ≤ k + 1. Hence
P (k + 1) = T .

By induction, we conclude that P (n) = T for all n ≥ 2. �


