Problem 1. Prove that for all integers $a, b \in \mathbb{Z}$ we have

 $(ab = 0) \implies (a = 0 \text{ or } b = 0).$

You may assume the following axioms: (1) For all $x, y, z \in \mathbb{Z}$, if x < y and z > 0 then xz < yz. (2) For all $x, y, z \in \mathbb{Z}$, if x < y and z < 0 then xz > yz. (3) 0 < 1.

Problem 2. (Multiplicative Cancellation)

- (a) Given $a, b, c \in \mathbb{Z}$ with $c \neq 0$, prove that $(ac = bc) \Rightarrow (a = b)$.
- (b) Given $a, b \in \mathbb{Z}$ with a|b and b|a, prove that $a = \pm b$.

The remaining problems will use the following notation. Fix a nonzero integer $0 \neq n \in \mathbb{Z}$. Then for all integers $a, b \in \mathbb{Z}$ we define

$$``a \equiv b \pmod{n} " \iff n | (a - b).$$

Problem 3. Given $0 \neq n \in \mathbb{Z}$, prove that is it safe to "add" and "multiply" numbers modulo n. That is, given $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$, prove that

- (a) $a + b \equiv a' + b' \pmod{n}$
- (b) $ab \equiv a'b' \pmod{n}$

[Hint: We have a = a' + kn and $b = b' + \ell n$ for some $k, \ell \in \mathbb{Z}$.]

Problem 4.

- (a) Consider $a, b, d \in \mathbb{Z}$ with d|ab. If gcd(d, a) = 1 prove that d|b.
- (b) Consider $a, b, c, n \in \mathbb{Z}$ with $0 \neq n$ and gcd(c, n) = 1. Prove that

$$ac \equiv bc \pmod{n} \implies a \equiv b \pmod{n}$$
.

(c) Give a specific example to show that the result of part (b) fails when $gcd(c, n) \neq 1$.

Problem 5. (Generalization of Euclid's Lemma) Let $p \in \mathbb{Z}$ be prime. Use induction to prove that for all integers $n \geq 2$ the following holds: "Given any set of n integers $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ such that $p|a_1a_2 \cdots a_n$, there exists some $1 \leq i \leq n$ such that $p|a_i$." [Hint: Call the statement P(n). Prove that (or say why) P(2) = T. Prove that for all $k \geq 2$ we have $P(k) \Rightarrow P(k+1)$. (Your proof will begin: "Fix $k \geq 2$ and assume for induction that P(k) = T. In this case we want to show that P(k+1) = T. So consider any k+1 integers $a_1, a_2, \ldots, a_{k+1} \in \mathbb{Z}$ such that $p|a_1a_2 \cdots a_{k+1}$.")]