Problem 1. Prove that for all integers $a, b \in \mathbb{Z}$ we have

$$
(a b=0) \quad \Longrightarrow \quad(a=0 \text { or } b=0) .
$$

You may assume the following axioms: (1) For all $x, y, z \in \mathbb{Z}$, if $x<y$ and $z>0$ then $x z<y z$. (2) For all $x, y, z \in \mathbb{Z}$, if $x<y$ and $z<0$ then $x z>y z$. (3) $0<1$.

Problem 2. (Multiplicative Cancellation)

(a) Given $a, b, c \in \mathbb{Z}$ with $c \neq 0$, prove that $(a c=b c) \Rightarrow(a=b)$.
(b) Given $a, b \in \mathbb{Z}$ with $a \mid b$ and $b \mid a$, prove that $a= \pm b$.

The remaining problems will use the following notation. Fix a nonzero integer $0 \neq n \in \mathbb{Z}$. Then for all integers $a, b \in \mathbb{Z}$ we define

$$
" a \equiv b \quad(\bmod n) " \Longleftrightarrow n \mid(a-b) .
$$

Problem 3. Given $0 \neq n \in \mathbb{Z}$, prove that is it safe to "add" and "multiply" numbers modulo n. That is, given $a \equiv a^{\prime}(\bmod n)$ and $b \equiv b^{\prime}(\bmod n)$, prove that
(a) $a+b \equiv a^{\prime}+b^{\prime}(\bmod n)$
(b) $a b \equiv a^{\prime} b^{\prime}(\bmod n)$
[Hint: We have $a=a^{\prime}+k n$ and $b=b^{\prime}+\ell n$ for some $k, \ell \in \mathbb{Z}$.]

Problem 4.

(a) Consider $a, b, d \in \mathbb{Z}$ with $d \mid a b$. If $\operatorname{gcd}(d, a)=1$ prove that $d \mid b$.
(b) Consider $a, b, c, n \in \mathbb{Z}$ with $0 \neq n$ and $\operatorname{gcd}(\mathrm{c}, \mathrm{n})=1$. Prove that

$$
a c \equiv b c \quad(\bmod n) \quad \Longrightarrow \quad a \equiv b \quad(\bmod n) .
$$

(c) Give a specific example to show that the result of part (b) fails when $\operatorname{gcd}(c, n) \neq 1$.

Problem 5. (Generalization of Euclid's Lemma) Let $p \in \mathbb{Z}$ be prime. Use induction to prove that for all integers $n \geq 2$ the following holds: "Given any set of n integers $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ such that $p \mid a_{1} a_{2} \cdots a_{n}$, there exists some $1 \leq i \leq n$ such that $p \mid a_{i}$." [Hint: Call the statement $P(n)$. Prove that (or say why) $P(2)=T$. Prove that for all $k \geq 2$ we have $P(k) \Rightarrow P(k+1)$. (Your proof will begin: "Fix $k \geq 2$ and assume for induction that $P(k)=T$. In this case we want to show that $P(k+1)=T$. So consider any $k+1$ integers $a_{1}, a_{2}, \ldots, a_{k+1} \in \mathbb{Z}$ such that $\left.\left.p \mid a_{1} a_{2} \cdots a_{k+1} . "\right)\right]$

