Problem 1. Let X and Y be finite sets.
(a) If there exists a surjective function $f: X \rightarrow Y$, prove that $|X| \geq|Y|$.
(b) If there exists an injective function $g: X \rightarrow Y$, prove that $|X| \leq|Y|$.
(c) If there exists a bijective function $h: X \rightarrow Y$, prove that $|X|=|Y|$.
[Hint: For parts (a) and (b), for each $y \in Y$ let $d(y)$ be the number of arrows pointing to $y \in Y$. What happens if you sum the numbers $d(y)$ for all $y \in Y$? Recall the definitions from the course notes.]

Proof. Let X, Y be sets and consider a function $f: X \rightarrow Y$. Let $d(y)$ denote the number of arrows of f pointing to $y \in Y$ (this is the same as the number of $x \in X$ such that $f(x)=y$). If we sum the numbers $d(y)$ over $y \in Y$ we get the total number of arrows. Since (by definition) every element of X has exactly one arrow, this implies that

$$
|X|=\sum_{y \in Y} d(y)
$$

For part (a), suppose that $f: X \rightarrow Y$ is surjective, i.e., that we have $d(y) \geq 1$ for all $y \in Y$. In this case we have

$$
|X|=\sum_{y \in Y} d(y) \geq \sum_{y \in Y} 1=|Y| .
$$

For part (b), suppose that $f: X \rightarrow Y$ is injective, i.e., that we have $d(y) \leq 1$ for all $y \in Y$. In this case we have

$$
|X|=\sum_{y \in Y} d(y) \leq \sum_{y \in Y} 1=|Y| .
$$

For part (c), suppose that $f: X \rightarrow Y$ is bijective, i.e., that we have $d(y)=1$ for all $y \in Y$. In this case we have

$$
|X|=\sum_{y \in Y} d(y)=\sum_{y \in Y} 1=|Y| .
$$

Problem 2. For all integers $a, b \in \mathbb{Z}$ with $b \neq 0$, we define an abstract symbol " $\frac{a}{b}$ ". We declare rules for "multiplying" and "adding" abstract symbols,

$$
\frac{a}{b} \cdot \frac{c}{d}:=\frac{a c}{b d} \quad \text { and } \quad \frac{a}{b}+\frac{c}{d}:=\frac{a d+b c}{b d}
$$

and we declare that the abstract symbols $\frac{a}{b}$ and $\frac{c}{d}$ are "equal" if and only if $a d=b c$. Let \mathbb{Q} denote the set of abstract symbols (we call this the system of rational numbers). For all rational numbers $x \in \mathbb{Q}$, prove that x can be expressed as $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ have no common divisor except ± 1. (We say that the fraction x can be written in "lowest terms".) [Hint: Let S be the set of absolute values of all the possible numerators of x :

$$
S:=\left\{|a| \in \mathbb{N}: \exists a, b \in \mathbb{Z} \text { such that } x=\frac{a}{b}\right\} \subseteq \mathbb{N} .
$$

Since $x \in \mathbb{Q}$, the set S is not empty, so by Well-Ordering it has a smallest element.]

Proof. Consider a rational number $x \in \mathbb{Q}$, and let S be the set of absolute values of all possible numerators of x. That is, let

$$
S:=\left\{|a|: \exists a, b \in \mathbb{Z} \text { such that } x=\frac{a}{b}\right\}
$$

Note that S is a subset of the natural numbers \mathbb{N}. Since $x \in \mathbb{Q}$, we know that x can be expressed as a fraction in at least one way, hence $S \neq \emptyset$. Thus, by the Well-Ordering Principle S has a smallest element. Call it $m \in S$.

Note briefly that for all $a, b \in \mathbb{Z}$ with $b \neq 0$ we have $\frac{-a}{b}=\frac{a}{-b}$. Thus the possible numerators of x come in positive-negative pairs. Since $m \in S$ we conclude that there exists $n \in \mathbb{Z}$ such that $x=\frac{m}{n}$. Now we claim that m and n have no nontrivial common divisor, i.e., that $\operatorname{gcd}(m, n)=1$. To prove this, assume for contradiction that there exists $d \in \mathbb{Z}$ such that $d \mid m$ (say $m=d m^{\prime}$), $d \mid n$ (say $n=d n^{\prime}$), and $|d|>1$. Then we have

$$
x=\frac{m}{n}=\frac{d m^{\prime}}{d n^{\prime}}=\frac{m^{\prime}}{n^{\prime}},
$$

and we see that m^{\prime} is also an element of S. But since $|d|>1$ we have $|m|=\left|d m^{\prime}\right|=|d|\left|m^{\prime}\right|>$ $\left|m^{\prime}\right|$, which contradicts the minimality of m. We conclude that m, n have no common divisor, thus we have succeeded in writing x in lowest terms.

Alternative Proof. Consider a rational number $x \in \mathbb{Q}$. By definition this means that $x=\frac{a}{b}$ for some $a, b \in \mathbb{Z}$ with $b \neq 0$. Let $d=\operatorname{gcd}(a, b)$, with $a=d a^{\prime}$ and $b=d b^{\prime}$, so we can write

$$
x=\frac{a}{b}=\frac{d a^{\prime}}{d b^{\prime}}=\frac{a^{\prime}}{b^{\prime}} .
$$

We claim that $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$. Indeed, by Bézout's Identity there exist $x, y \in \mathbb{Z}$ such that $d=a x+b y$ and then we have

$$
\begin{aligned}
& d=a x+b y \\
& d=d a^{\prime} x+d b^{\prime} y \\
& d=d\left(a^{\prime} x+b^{\prime} y\right) \\
& 1=a^{\prime} x+b^{\prime} y .
\end{aligned}
$$

This means that any common divisor of a^{\prime} and b^{\prime} also divides 1 , hence $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$. We have thus succeeded in expressing x in lowest terms.

Problem 3. The Division Algorithm 2.12 says that for all $a, b \in \mathbb{Z}$ with $b>0$ there exist unique $q, r \in \mathbb{Z}$ such that $a=q b+r$ and $0 \leq r<b$. Explicitly use this to prove the following: For all $a, b \in \mathbb{Z}$ with $b>0$ there exists a unique integer $k \in \mathbb{Z}$ such that

$$
k \leq \frac{a}{b}<k+1 .
$$

[Note: You must prove both the existence and the uniqueness of k. Don't be a hero; quote the Division Algorithm. You do not need to reduce everything to the axioms.]

Proof. First we will prove that existence of $k \in \mathbb{Z}$. Applying the Division Algorithm to divide a by b yields $a=q b+r$ with $0 \leq r<b$. Then we have

$$
\begin{aligned}
0 & \leq r<b \\
0 & \leq a-q b<b \\
q b & \leq a<b+q b \\
q & \leq \frac{a}{b}<q+1
\end{aligned}
$$

We may now take $k=q$.
Next we will show that this k is unique. That is, suppose that we have $k_{1} \leq \frac{a}{b}<k_{1}+1$ and $k_{2} \leq \frac{a}{b}<k_{2}+1$. We want to show that $k_{1}=k_{2}$. By reversing the steps above we have

$$
\begin{aligned}
k_{1} & \leq \frac{a}{b}<k_{1}+1 \\
k_{1} b & \leq a<k_{1} b+b \\
0 & \leq a-k_{1} b<b
\end{aligned}
$$

If we let $r_{1}:=a-k_{1} b$ then we have $a=k_{1} b+r_{1}$ with $0 \leq r_{1}<b$. Similarly, if we let $r_{2}:=a-k_{2} b$ then we have $a=k_{2} b+r_{2}$ with $0 \leq r_{2}<b$. By the uniqueness part of the Division Algorithm this implies that $k_{1}=k_{2}$, as desired.

Problem 4. How do - and \times interact? Prove the following exercises using the axioms of \mathbb{Z} from the handout. It will save time if you assume the Cancellation Property that was proved on the previous homework: $\forall a, b, c \in \mathbb{Z},(a+b=a+c) \Rightarrow(b=c)$.
(a) Prove that for all $a \in \mathbb{Z}$ we have $0 a=0$.
(b) Recall that $-n$ is the unique integer such that $n+(-n)=0$. Prove that for all $a, b \in \mathbb{Z}$ we have $(-a) b=-(a b)$. [Hint: You will need part (a).]
(c) Prove that for all $a, b, c \in \mathbb{Z}$ we have $a(b-c)=a b-a c$. [Hint: Use part (b).]
(d) Prove that for all $a, b \in \mathbb{Z}$ we have $(-a)(-b)=a b$. [Hint: Use part (a) to show that $a b+a(-b)=0$ and then use part (b). Note that $-(-n)=n$ for all $n \in \mathbb{Z}$.]
[Now if a child asks you why negative times negative is positive, you will know what to say.]
Proof. I will apply the commutative axioms (A1) and (M1) when needed, without comment. To prove (a) first note that $0=0+0$ by axiom (A3). Then we have

$$
\begin{align*}
0 & =0+0 \\
0 a & =(0+0) a \\
0 a & =0 a+0 a \tag{D}\\
0+0 a & =0 a+0 a \tag{A3}
\end{align*}
$$

Cancelling $0 a$ from the final equation gives $0=0 a$. To prove (b), recall that $-(a b)$ is the unique integer x such that $a b+x=0$. Thus we need to show that $a b+(-a) b=0$. Indeed, we have

$$
\begin{align*}
a b+(-a) b & =(a+(-a)) b \tag{D}\\
& =0 b \tag{A3}\\
& =0
\end{align*}
$$

by part (a)

To prove (c) note that

$$
\begin{align*}
a(b-c) & =a(b+(-c)), \\
& =a b+a(-c), \tag{D}\\
& =a b+(-(a c)), \\
& =a b-a c .
\end{align*}
$$

by part (b)

Finally, to prove (d) first note that

$$
\begin{align*}
a b+a(-b) & =a(b+(-b)), \tag{D}\\
& =a 0, \tag{A3}\\
& =0 .
\end{align*}
$$

by part (a)
This means that $a b$ is the additive inverse of $a(-b)$, i.e. $a b=-(a(-b))$. Recall that the result of part (b) says that $-(x y)=(-x) y$ for all $x, y \in \mathbb{Z}$. We apply this with $x=a$ and $y=-b$ to conclude that

$$
a b=-(a(-b))=(-a)(-b)
$$

