
Math 230 E Fall 2013
Homework 3 Solutions Drew Armstrong

Problem 1. Let X and Y be finite sets.

(a) If there exists a surjective function f : X → Y , prove that |X| ≥ |Y |.
(b) If there exists an injective function g : X → Y , prove that |X| ≤ |Y |.
(c) If there exists a bijective function h : X → Y , prove that |X| = |Y |.

[Hint: For parts (a) and (b), for each y ∈ Y let d(y) be the number of arrows pointing to
y ∈ Y . What happens if you sum the numbers d(y) for all y ∈ Y ? Recall the definitions
from the course notes.]

Proof. Let X,Y be sets and consider a function f : X → Y . Let d(y) denote the number of
arrows of f pointing to y ∈ Y (this is the same as the number of x ∈ X such that f(x) = y). If
we sum the numbers d(y) over y ∈ Y we get the total number of arrows. Since (by definition)
every element of X has exactly one arrow, this implies that

|X| =
∑
y∈Y

d(y).

For part (a), suppose that f : X → Y is surjective, i.e., that we have d(y) ≥ 1 for all y ∈ Y .
In this case we have

|X| =
∑
y∈Y

d(y) ≥
∑
y∈Y

1 = |Y |.

For part (b), suppose that f : X → Y is injective, i.e., that we have d(y) ≤ 1 for all y ∈ Y . In
this case we have

|X| =
∑
y∈Y

d(y) ≤
∑
y∈Y

1 = |Y |.

For part (c), suppose that f : X → Y is bijective, i.e., that we have d(y) = 1 for all y ∈ Y . In
this case we have

|X| =
∑
y∈Y

d(y) =
∑
y∈Y

1 = |Y |.

�

Problem 2. For all integers a, b ∈ Z with b 6= 0, we define an abstract symbol “a
b”. We

declare rules for “multiplying” and “adding” abstract symbols,

a

b
· c
d

:=
ac

bd
and

a

b
+

c

d
:=

ad + bc

bd
,

and we declare that the abstract symbols a
b and c

d are “equal” if and only if ad = bc. Let Q
denote the set of abstract symbols (we call this the system of rational numbers). For all
rational numbers x ∈ Q, prove that x can be expressed as a

b where a, b ∈ Z have no common
divisor except ±1. (We say that the fraction x can be written in “lowest terms”.) [Hint: Let
S be the set of absolute values of all the possible numerators of x:

S :=
{
|a| ∈ N : ∃ a, b ∈ Z such that x =

a

b

}
⊆ N.

Since x ∈ Q, the set S is not empty, so by Well-Ordering it has a smallest element.]



Proof. Consider a rational number x ∈ Q, and let S be the set of absolute values of all possible
numerators of x. That is, let

S :=
{
|a| : ∃ a, b ∈ Z such that x =

a

b

}
Note that S is a subset of the natural numbers N. Since x ∈ Q, we know that x can be
expressed as a fraction in at least one way, hence S 6= ∅. Thus, by the Well-Ordering Principle
S has a smallest element. Call it m ∈ S.

Note briefly that for all a, b ∈ Z with b 6= 0 we have −ab = a
−b . Thus the possible numerators

of x come in positive-negative pairs. Since m ∈ S we conclude that there exists n ∈ Z such
that x = m

n . Now we claim that m and n have no nontrivial common divisor, i.e., that
gcd(m,n) = 1. To prove this, assume for contradiction that there exists d ∈ Z such that d|m
(say m = dm′), d|n (say n = dn′), and |d| > 1. Then we have

x =
m

n
=

dm′

dn′
=

m′

n′
,

and we see that m′ is also an element of S. But since |d| > 1 we have |m| = |dm′| = |d||m′| >
|m′|, which contradicts the minimality of m. We conclude that m,n have no common divisor,
thus we have succeeded in writing x in lowest terms. �

Alternative Proof. Consider a rational number x ∈ Q. By definition this means that x = a
b

for some a, b ∈ Z with b 6= 0. Let d = gcd(a, b), with a = da′ and b = db′, so we can write

x =
a

b
=

da′

db′
=

a′

b′
.

We claim that gcd(a′, b′) = 1. Indeed, by Bézout’s Identity there exist x, y ∈ Z such that
d = ax + by and then we have

d = ax + by

d = da′x + db′y

d = d(a′x + b′y)

1 = a′x + b′y.

This means that any common divisor of a′ and b′ also divides 1, hence gcd(a′, b′) = 1. We
have thus succeeded in expressing x in lowest terms. �

Problem 3. The Division Algorithm 2.12 says that for all a, b ∈ Z with b > 0 there exist
unique q, r ∈ Z such that a = qb + r and 0 ≤ r < b. Explicitly use this to prove the following:
For all a, b ∈ Z with b > 0 there exists a unique integer k ∈ Z such that

k ≤ a

b
< k + 1.

[Note: You must prove both the existence and the uniqueness of k. Don’t be a hero; quote the
Division Algorithm. You do not need to reduce everything to the axioms.]



Proof. First we will prove that existence of k ∈ Z. Applying the Division Algorithm to divide
a by b yields a = qb + r with 0 ≤ r < b. Then we have

0 ≤ r < b

0 ≤ a− qb < b

qb ≤ a < b + qb

q ≤ a

b
< q + 1.

We may now take k = q.
Next we will show that this k is unique. That is, suppose that we have k1 ≤ a

b < k1 + 1
and k2 ≤ a

b < k2 + 1. We want to show that k1 = k2. By reversing the steps above we have

k1 ≤
a

b
< k1 + 1

k1b ≤ a < k1b + b

0 ≤ a− k1b < b.

If we let r1 := a − k1b then we have a = k1b + r1 with 0 ≤ r1 < b. Similarly, if we let
r2 := a − k2b then we have a = k2b + r2 with 0 ≤ r2 < b. By the uniqueness part of the
Division Algorithm this implies that k1 = k2, as desired. �

Problem 4. How do − and × interact? Prove the following exercises using the axioms
of Z from the handout. It will save time if you assume the Cancellation Property that was
proved on the previous homework: ∀ a, b, c ∈ Z, (a + b = a + c)⇒ (b = c).

(a) Prove that for all a ∈ Z we have 0a = 0.
(b) Recall that −n is the unique integer such that n+(−n) = 0. Prove that for all a, b ∈ Z

we have (−a)b = −(ab). [Hint: You will need part (a).]
(c) Prove that for all a, b, c ∈ Z we have a(b− c) = ab− ac. [Hint: Use part (b).]
(d) Prove that for all a, b ∈ Z we have (−a)(−b) = ab. [Hint: Use part (a) to show that

ab + a(−b) = 0 and then use part (b). Note that −(−n) = n for all n ∈ Z.]

[Now if a child asks you why negative times negative is positive, you will know what to say.]

Proof. I will apply the commutative axioms (A1) and (M1) when needed, without comment.
To prove (a) first note that 0 = 0 + 0 by axiom (A3). Then we have

0 = 0 + 0,

0a = (0 + 0)a,

0a = 0a + 0a, (D)

0 + 0a = 0a + 0a. (A3)

Cancelling 0a from the final equation gives 0 = 0a. To prove (b), recall that −(ab) is the
unique integer x such that ab + x = 0. Thus we need to show that ab + (−a)b = 0. Indeed,
we have

ab + (−a)b = (a + (−a))b, (D)

= 0b, (A3)

= 0. by part (a)



To prove (c) note that

a(b− c) = a(b + (−c)),
= ab + a(−c), (D)

= ab + (−(ac)), by part (b)

= ab− ac.

Finally, to prove (d) first note that

ab + a(−b) = a(b + (−b)), (D)

= a0, (A3)

= 0. by part (a)

This means that ab is the additive inverse of a(−b), i.e. ab = −(a(−b)). Recall that the result
of part (b) says that −(xy) = (−x)y for all x, y ∈ Z. We apply this with x = a and y = −b to
conclude that

ab = −(a(−b)) = (−a)(−b).
�


