Problem 1. Let X and Y be finite sets.
(a) If there exists a surjective function $f: X \rightarrow Y$, prove that $|X| \geq|Y|$.
(b) If there exists an injective function $g: X \rightarrow Y$, prove that $|X| \leq|Y|$.
(c) If there exists a bijective function $h: X \rightarrow Y$, prove that $|X|=|Y|$.
[Hint: For parts (a) and (b), for each $y \in Y$ let $d(y)$ be the number of arrows pointing to $y \in Y$. What happens if you sum the numbers $d(y)$ for all $y \in Y$? Recall the definitions from the course notes.]

Problem 2. For all integers $a, b \in \mathbb{Z}$ with $b \neq 0$, we define an abstract symbol " $\frac{a}{b}$ ". We declare rules for "multiplying" and "adding" abstract symbols,

$$
\frac{a}{b} \cdot \frac{c}{d}:=\frac{a c}{b d} \quad \text { and } \quad \frac{a}{b}+\frac{c}{d}:=\frac{a d+b c}{b d}
$$

and we declare that the abstract symbols $\frac{a}{b}$ and $\frac{c}{d}$ are "equal" if and only if $a d=b c$. Let \mathbb{Q} denote the set of abstract symbols (we call this the system of rational numbers). For all rational numbers $x \in \mathbb{Q}$, prove that x can be expressed as $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ have no common divisor except ± 1. (We say that the fraction x can be written in "lowest terms".) [Hint: Let S be the set of absolute values of all the possible numerators of x :

$$
S:=\left\{|a| \in \mathbb{N}: \exists a, b \in \mathbb{Z} \text { such that } x=\frac{a}{b}\right\} \subseteq \mathbb{N} .
$$

Since $x \in \mathbb{Q}$, the set S is not empty, so by Well-Ordering it has a smallest element.]

Problem 3. The Division Algorithm 2.12 says that for all $a, b \in \mathbb{Z}$ with $b>0$ there exist unique $q, r \in \mathbb{Z}$ such that $a=q b+r$ and $0 \leq r<b$. Explicitly use this to prove the following: For all $a, b \in \mathbb{Z}$ with $b>0$ there exists a unique integer $k \in \mathbb{Z}$ such that

$$
k \leq \frac{a}{b}<k+1 .
$$

[Note: You must prove both the existence and the uniqueness of k. Don't be a hero; quote the Division Algorithm. You do not need to reduce everything to the axioms.]

Problem 4. How do - and \times interact? Prove the following exercises using the axioms of \mathbb{Z} from the handout. It will save time if you assume the Cancellation Property that was proved on the previous homework: $\forall a, b, c \in \mathbb{Z},(a+b=a+c) \Rightarrow(b=c)$.
(a) Prove that for all $a \in \mathbb{Z}$ we have $0 a=0$.
(b) Recall that $-n$ is the unique integer such that $n+(-n)=0$. Prove that for all $a, b \in \mathbb{Z}$ we have $(-a) b=-(a b)$. [Hint: You will need part (a).]
(c) Prove that for all $a, b, c \in \mathbb{Z}$ we have $a(b-c)=a b-a c$. [Hint: Use part (b).]
(d) Prove that for all $a, b \in \mathbb{Z}$ we have $(-a)(-b)=a b$. [Hint: Use part (a) to show that $a b+a(-b)=0$ and then use part (b). Note that $-(-n)=n$ for all $n \in \mathbb{Z}$.]
[Now if a child asks you why negative times negative is positive, you will know what to say.]

