Problem 1. Practice with the axioms of \mathbb{Z}. For the following exercises I want you to give Euclidean style proofs using the axioms of \mathbb{Z} from the handout. That is, don't assume anything and justify every tiny little step.
(a) Given integers $a, b, c \in \mathbb{Z}$ with $a+b=a+c$, prove that $b=c$. This is called the cancellation property of \mathbb{Z}. [Hint: First apply axiom (A4) to the integer a.]
(b) Axiom (A3) says that for each integer $a \in \mathbb{Z}$ there exists another integer $b \in \mathbb{Z}$ such that $a+b=0$ (and we call this b an "additive inverse" of a). Prove that additive inverses are unique. That is, show that if $a+b=0$ and $a+c=0$ then $b=c$. [Hint: Use part (a).]

Proof. To prove (a), consider integers $a, b, c \in \mathbb{Z}$ such that $a+b=a+c$. By (A4) there exists some $d \in \mathbb{Z}$ such that $a+d=0$. Then we have

$$
\begin{align*}
a+b & =a+c, \\
b+a & =c+a, \tag{A1}\\
(b+a)+d & =(c+a)+d, \\
b+(a+d) & =c+(a+d), \tag{A2}\\
b+0 & =c+0, \\
0+b & =0+c, \tag{A1}\\
b & =c . \tag{A3}
\end{align*}
$$

(don't worry about it)
(property of d)
[Oops. The second step there was actually a bit tricky. Don't worry about it.] To prove (b), consider an integer $a \in \mathbb{Z}$ and suppose that there exist $b, c \in \mathbb{Z}$ such that $a+b=0=a+c$. Since $a+b=a+c$, the cancellation proprty from part (a) says that $b=c$.
[Since the additive inverse of a is unique, we might as well give it a name. How about " $-a$ " ?]
Problem 2. For each integer $a \in \mathbb{Z}$ we define the absolute value:

$$
|a|:= \begin{cases}a & \text { if } a \geq 0 \\ -a & \text { if } a<0\end{cases}
$$

(a) Prove that for all integers $a, b \in \mathbb{Z}$ we have $|a b|=|a||b|$. [Hint: You may assume the properties $(-a)(-b)=a b$ and $(-a) b=-(a b)$ without proof. We'll prove them later.]
(b) Given integers $a, b \in \mathbb{Z}$ we say that a divides b (and we write $a \mid b$) if there exists $q \in \mathbb{Z}$ such that $b=q a$. If $a \mid b$ and $b \neq 0$, prove that $|a| \leq|b|$. [Hint: If $q \neq 0$ note that $|q| \geq 1$. Now use part (a).]

Proof. To prove (a), consider two integers $a, b \in \mathbb{Z}$. If a or b is zero then we have $|a b|=0=$ $|a||b|$, so assume that a and b are both nonzero. Now there are four cases:

- If $a>0$ and $b>0$ then we have $a b>0$, hence

$$
|a b|=a b=|a||b| .
$$

- If $a<0$ and $b>0$ then we have $a b<0$, hence

$$
|a b|=-(a b)=(-a) b=|a||b| .
$$

- If $a>0$ and $b<0$ then we have $a b<0$, hence

$$
|a b|=-(a b)=a(-b)=|a||b| .
$$

- If $a<0$ and $b<0$ then we have $a b>0$, hence

$$
|a b|=(-a)(-b)=a b=|a||b| \text {. }
$$

To prove (b) suppose that $a \mid b$ (say, $b=q a$) with $b \neq 0$. Since $b \neq 0$ we also have $q \neq 0$, and since q is an integer this implies $|q| \geq 1$. (Strictly speaking, we probably need the WellOrdering Axiom to prove that, but we won't bother.) Multiplying both sides of the inequality $|q| \geq 1$ by the non-negative $|a|$ gives $|q||a| \geq|a|$. Finally, use part (a) to conclude that

$$
|b|=|q||a| \geq|a| .
$$

Problem 3. Prove that $\sqrt{3}$ is not a ratio of whole numbers, in two steps.
(a) First prove the following lemma: Given a whole number n, if n^{2} is a multiple of 3 , then so is n. [Hint: Use the contrapositive, and note that there are two different ways for n to be not a multiple of 3 . Treat each separately.]
(b) Use the method of contradiction to prove that $\sqrt{3}$ is not a ratio of whole numbers. Quote your lemma in the proof. [Hint: Mimic the proof for $\sqrt{2}$ as closely as possible.]

Lemma: If n^{2} is a multiple of 3 then so is n.
Proof. We will prove the contrapositive statement - that if n is not a multiple of 3 then neither is n^{2} - which is logically equivalent. So suppose that n is not a multiple of 3 . There are two cases: (1) If $n=3 k+1$ for some k, then $n^{2}=(3 k+1)^{2}=9 k^{2}+6 k+1=3\left(3 k^{2}+2 k\right)+1$ is not a multiple of 3 . (It leaves remainder 1 when divided by 3.) (2) If $n=3 k+2$ for some k, then $n^{2}=(3 k+2)^{2}=9 k^{2}+12 k+4=9 k^{2}+12 k+3+1=3\left(3 k^{2}+4 k+1\right)+1$ is also not a multiple of 3 .
[Here we implicitly used the Division Algorithm to conclude that every integer $n \in \mathbb{Z}$ is of the form $3 k+0,3 k+1$, or $3 k+2$ for some $k \in \mathbb{Z}$.]

Theorem: $\sqrt{3}$ is not a ratio of whole numbers.
Proof. Suppose for contradiction that $\sqrt{3}=a / b$ for whole numbers a, b. After dividing out common factors we may assume that a and b have no common factor (other than ± 1). Square both sides to get $3=a^{2} / b^{2}$ and then multiply by b^{2} to get $a^{2}=3 b^{2}$. Since a^{2} is a multiple of 3 the Lemma implies that $a=3 k$ for some k. But then $3 b^{2}=a^{2}=9 k^{2}$ and dividing by 3 gives $b^{2}=3 k^{2}$. The Lemma now implies that b is a multiple of 3 . To summarize, we have shown that a and b are both divisible by 3, but this contradicts the fact that a, b have no common factor. Hence our original assumption - that $\sqrt{3}$ is a ratio of whole numbers must be false.
[When we assumed that we could write a / b in "lowest terms", we were implicitly using the WellOrdering Axiom to tell us that the process of dividing out common factors would stop in finite time.]

Problem 4. In this exercise you will show that all of Boolean logic can be expressed using only the concepts NOT and \Rightarrow. We use the symbol \equiv to denote logical equivalence.
(a) Use a truth table to show that " P OR Q " \equiv "(NOT $P) \Rightarrow Q$ ".
(b) Use a truth table to show that " P AND Q " \equiv "NOT $(P \Rightarrow($ NOT $Q)$)".
(c) Write the statement $P \Leftrightarrow Q$ using only the symbols P, Q, NOT and \Rightarrow (and, of course, parentheses).

Proof. For part (a) we have the following truth table:

| P | Q | P | OR Q | NOT P |
| :---: | :---: | :---: | :---: | :---: |$($ NOT $P) \Rightarrow Q$

For part (b) we have the following truth table:

| P | Q | P AND Q | NOT Q | $P \Rightarrow($ NOT $Q)$ | NOT $(P \Rightarrow($ NOT $Q))$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | T |
| T | F | F | T | T | F |
| F | T | F | F | T | F |
| F | F | F | T | T | F |

Now we turn to part (c). By definition we have " $P \Leftrightarrow Q$ " \equiv " $(P \Rightarrow Q)$ AND $(Q \Rightarrow P)$ ". Finally, applying part (b) gives

$$
\begin{aligned}
" P \Leftrightarrow Q " & \equiv "(P \Rightarrow Q) \text { AND }(Q \Rightarrow P) " \\
& \equiv " \operatorname{NOT}((P \Rightarrow Q) \Rightarrow(\operatorname{NOT}(Q \Rightarrow P))) " .
\end{aligned}
$$

[This problem shows that it's possible to discuss logic without ever using the words OR or AND. It doesn't mean that we want to; it just means that it's possible.]

