Problem 1. Practice with the axioms of \mathbb{Z} **.** For the following exercises I want you to give Euclidean style proofs using the axioms of \mathbb{Z} from the handout. That is, *don't assume anything* and *justify every tiny little step*.

- (a) Given integers $a, b, c \in \mathbb{Z}$ with a + b = a + c, prove that b = c. This is called the cancellation property of \mathbb{Z} . [Hint: First apply axiom (A4) to the integer a.]
- (b) Axiom (A3) says that for each integer $a \in \mathbb{Z}$ there exists another integer $b \in \mathbb{Z}$ such that a + b = 0 (and we call this b an "additive inverse" of a). Prove that additive inverses are **unique**. That is, show that if a + b = 0 and a + c = 0 then b = c. [Hint: Use part (a).]

Proof. To prove (a), consider integers $a, b, c \in \mathbb{Z}$ such that a + b = a + c. By (A4) there exists some $d \in \mathbb{Z}$ such that a + d = 0. Then we have

$$a + b = a + c,$$

$$b + a = c + a,$$

$$(A1)$$

$$(b + a) + d = (c + a) + d,$$

$$(b + (a + d) = c + (a + d),$$

$$b + 0 = c + 0,$$

$$(b + 0 = c + 0,$$

$$(c + 1) = 0 + c,$$

$$(c + 1) = 0 +$$

[Oops. The second step there was actually a bit tricky. Don't worry about it.] To prove (b), consider an integer $a \in \mathbb{Z}$ and suppose that there exist $b, c \in \mathbb{Z}$ such that a + b = 0 = a + c. Since a + b = a + c, the cancellation propriy from part (a) says that b = c.

[Since the additive inverse of a is unique, we might as well give it a name. How about "-a"?]

Problem 2. For each integer $a \in \mathbb{Z}$ we define the absolute value:

$$|a| := \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a < 0 \end{cases}$$

- (a) Prove that for all integers $a, b \in \mathbb{Z}$ we have |ab| = |a||b|. [Hint: You may assume the properties (-a)(-b) = ab and (-a)b = -(ab) without proof. We'll prove them later.]
- (b) Given integers $a, b \in \mathbb{Z}$ we say that a divides b (and we write a|b) if there exists $q \in \mathbb{Z}$ such that b = qa. If a|b and $b \neq 0$, prove that $|a| \leq |b|$. [Hint: If $q \neq 0$ note that $|q| \geq 1$. Now use part (a).]

Proof. To prove (a), consider two integers $a, b \in \mathbb{Z}$. If a or b is zero then we have |ab| = 0 = |a||b|, so assume that a and b are both nonzero. Now there are four cases:

• If a > 0 and b > 0 then we have ab > 0, hence

$$|ab| = ab = |a||b|.$$

• If a < 0 and b > 0 then we have ab < 0, hence

$$|ab| = -(ab) = (-a)b = |a||b|.$$

• If a > 0 and b < 0 then we have ab < 0, hence

$$|ab| = -(ab) = a(-b) = |a||b|$$

• If a < 0 and b < 0 then we have ab > 0, hence

$$|ab| = (-a)(-b) = ab = |a||b|.$$

To prove (b) suppose that a|b (say, b = qa) with $b \neq 0$. Since $b \neq 0$ we also have $q \neq 0$, and since q is an integer this implies $|q| \geq 1$. (Strictly speaking, we probably need the Well-Ordering Axiom to prove that, but we won't bother.) Multiplying both sides of the inequality $|q| \geq 1$ by the non-negative |a| gives $|q||a| \geq |a|$. Finally, use part (a) to conclude that

$$| = |q||a| \ge |a|.$$

Problem 3. Prove that $\sqrt{3}$ is not a ratio of whole numbers, in two steps.

|b|

- (a) First prove the following **lemma**: Given a whole number n, if n^2 is a multiple of 3, then so is n. [Hint: Use the contrapositive, and note that there are two different ways for n to be not a multiple of 3. Treat each separately.]
- (b) Use the method of contradiction to prove that $\sqrt{3}$ is not a ratio of whole numbers. Quote your lemma in the proof. [Hint: Mimic the proof for $\sqrt{2}$ as closely as possible.]

Lemma: If n^2 is a multiple of 3 then so is n.

Proof. We will prove the contrapositive statement — that if n is **not** a multiple of 3 then **neither** is n^2 — which is logically equivalent. So suppose that n is not a multiple of 3. There are two cases: (1) If n = 3k+1 for some k, then $n^2 = (3k+1)^2 = 9k^2+6k+1 = 3(3k^2+2k)+1$ is not a multiple of 3. (It leaves remainder 1 when divided by 3.) (2) If n = 3k+2 for some k, then $n^2 = (3k+2)^2 = 9k^2+12k+4 = 9k^2+12k+3+1 = 3(3k^2+4k+1)+1$ is also not a multiple of 3.

[Here we implicitly used the Division Algorithm to conclude that every integer $n \in \mathbb{Z}$ is of the form 3k + 0, 3k + 1, or 3k + 2 for some $k \in \mathbb{Z}$.]

Theorem: $\sqrt{3}$ is not a ratio of whole numbers.

Proof. Suppose for contradiction that $\sqrt{3} = a/b$ for whole numbers a, b. After dividing out common factors we may assume that a and b have no common factor (other than ± 1). Square both sides to get $3 = a^2/b^2$ and then multiply by b^2 to get $a^2 = 3b^2$. Since a^2 is a multiple of 3 the Lemma implies that a = 3k for some k. But then $3b^2 = a^2 = 9k^2$ and dividing by 3 gives $b^2 = 3k^2$. The Lemma now implies that b is a multiple of 3. To summarize, we have shown that a and b are both divisible by 3, but this contradicts the fact that a, b have no common factor. Hence our original assumption — that $\sqrt{3}$ is a ratio of whole numbers — must be false.

[When we assumed that we could write a/b in "lowest terms", we were implicitly using the Well-Ordering Axiom to tell us that the process of dividing out common factors would stop in finite time.]

Problem 4. In this exercise you will show that all of Boolean logic can be expressed using only the concepts NOT and \Rightarrow . We use the symbol \equiv to denote logical equivalence.

- (a) Use a truth table to show that "P OR Q" \equiv "(NOT P) \Rightarrow Q".
- (b) Use a truth table to show that "P AND Q" \equiv "NOT(P \Rightarrow (NOT Q))".
- (c) Write the statement $P \Leftrightarrow Q$ using only the symbols P, Q, NOT and \Rightarrow (and, of course, parentheses).

Proof. For part (a) we have the following truth table:

P	Q	P OR Q	NOT P	$(\operatorname{NOT} P) \Rightarrow Q$
T	T	T	F	T
T	F	T	F	T
F	T	T	T	T
F	F	F	T	F

For part (b) we have the following truth table:

P Q	P AND Q	$\operatorname{NOT} Q$	$P \Rightarrow (\operatorname{NOT} Q)$	$\operatorname{NOT}\left(P \Rightarrow (\operatorname{NOT} Q)\right)$
T T	T T	F	F	T
T F	F	T	T	F
F T	F	F	T	F
F F	F	T	T	F

Now we turn to part (c). By definition we have " $P \Leftrightarrow Q$ " \equiv " $(P \Rightarrow Q)$ AND $(Q \Rightarrow P)$ ". Finally, applying part (b) gives

$$\begin{array}{l} "P \Leftrightarrow Q" \equiv "(P \Rightarrow Q) \text{ AND } (Q \Rightarrow P)" \\ \equiv "\text{NOT} \left((P \Rightarrow Q) \Rightarrow (\text{NOT} (Q \Rightarrow P)) \right)". \end{array}$$

[This problem shows that it's possible to discuss logic without ever using the words OR or AND. It doesn't mean that we *want* to; it just means that it's *possible*.]