Problem 1. Practice with the axioms of \mathbb{Z} **.** For the following exercises I want you to give Euclidean style proofs using the axioms of \mathbb{Z} from the handout. That is, *don't assume anything* and *justify every tiny little step*.

- (a) Given integers $a, b, c \in \mathbb{Z}$ with a + b = a + c, prove that b = c. This is called the cancellation property of \mathbb{Z} . [Hint: First apply axiom (A4) to the integer a.]
- (b) Axiom (A3) says that for each integer $a \in \mathbb{Z}$ there exists another integer $b \in \mathbb{Z}$ such that a + b = 0 (and we call this b an "additive inverse" of a). Prove that additive inverses are **unique**. That is, show that if a + b = 0 and a + c = 0 then b = c. [Hint: Use part (a).]

[Since the additive inverse of a is unique, we might as well give it a name. How about "-a"?]

Problem 2. For each integer $a \in \mathbb{Z}$ we define the absolute value:

$$|a| := \begin{cases} a, & \text{if } a \ge 0, \\ -a, & \text{if } a < 0. \end{cases}$$

- (a) Prove that for all integers $a, b \in \mathbb{Z}$ we have |ab| = |a||b|. [Hint: You may assume the properties (-a)(-b) = ab and (-a)b = -(ab) without proof. We'll prove them later.]
- (b) Given integers $a, b \in \mathbb{Z}$ we say that a divides b (and we write a|b) if there exists $q \in \mathbb{Z}$ such that b = qa. If a|b and $b \neq 0$, prove that $|a| \leq |b|$. [Hint: If $q \neq 0$ note that $|q| \geq 1$. Now use part (a).]

Problem 3. Prove that $\sqrt{3}$ is not a ratio of whole numbers, in two steps.

- (a) First prove the following **lemma**: Given a whole number n, if n^2 is a multiple of 3, then so is n. [Hint: Use the contrapositive, and note that there are two different ways for n to be not a multiple of 3. Treat each separately.]
- (b) Use the method of contradiction to prove that $\sqrt{3}$ is not a ratio of whole numbers. Quote your lemma in the proof. [Hint: Mimic the proof for $\sqrt{2}$ as closely as possible.]

Problem 4. In this exercise you will show that all of Boolean logic can be expressed using only the concepts NOT and \Rightarrow . We use the symbol \equiv to denote logical equivalence.

- (a) Use a truth table to show that "P OR Q" \equiv "(NOT P) \Rightarrow Q".
- (b) Use a truth table to show that "P AND Q" \equiv "NOT(P \Rightarrow (NOT Q))".
- (c) Write the statement $P \Leftrightarrow Q$ using only the symbols P, Q, NOT and \Rightarrow (and, of course, parentheses).