Problem 1. Practice with the axioms of \mathbb{Z}. For the following exercises I want you to give Euclidean style proofs using the axioms of \mathbb{Z} from the handout. That is, don't assume anything and justify every tiny little step.
(a) Given integers $a, b, c \in \mathbb{Z}$ with $a+b=a+c$, prove that $b=c$. This is called the cancellation property of \mathbb{Z}. [Hint: First apply axiom (A4) to the integer a.]
(b) Axiom (A3) says that for each integer $a \in \mathbb{Z}$ there exists another integer $b \in \mathbb{Z}$ such that $a+b=0$ (and we call this b an "additive inverse" of a). Prove that additive inverses are unique. That is, show that if $a+b=0$ and $a+c=0$ then $b=c$. [Hint: Use part (a).]
[Since the additive inverse of a is unique, we might as well give it a name. How about " $-a$ " ?]
Problem 2. For each integer $a \in \mathbb{Z}$ we define the absolute value:

$$
|a|:= \begin{cases}a, & \text { if } a \geq 0 \\ -a, & \text { if } a<0\end{cases}
$$

(a) Prove that for all integers $a, b \in \mathbb{Z}$ we have $|a b|=|a||b|$. [Hint: You may assume the properties $(-a)(-b)=a b$ and $(-a) b=-(a b)$ without proof. We'll prove them later.]
(b) Given integers $a, b \in \mathbb{Z}$ we say that a divides b (and we write $a \mid b$) if there exists $q \in \mathbb{Z}$ such that $b=q a$. If $a \mid b$ and $b \neq 0$, prove that $|a| \leq|b|$. [Hint: If $q \neq 0$ note that $|q| \geq 1$. Now use part (a).]

Problem 3. Prove that $\sqrt{3}$ is not a ratio of whole numbers, in two steps.
(a) First prove the following lemma: Given a whole number n, if n^{2} is a multiple of 3 , then so is n. [Hint: Use the contrapositive, and note that there are two different ways for n to be not a multiple of 3 . Treat each separately.]
(b) Use the method of contradiction to prove that $\sqrt{3}$ is not a ratio of whole numbers. Quote your lemma in the proof. [Hint: Mimic the proof for $\sqrt{2}$ as closely as possible.]

Problem 4. In this exercise you will show that all of Boolean logic can be expressed using only the concepts NOT and \Rightarrow. We use the symbol \equiv to denote logical equivalence.
(a) Use a truth table to show that " P OR Q " \equiv "(NOT $P) \Rightarrow Q$ ".
(b) Use a truth table to show that " P AND Q " \equiv "NOT $(P \Rightarrow($ NOT $Q)$)".
(c) Write the statement $P \Leftrightarrow Q$ using only the symbols P, Q, NOT and \Rightarrow (and, of course, parentheses).

