There are 3 problems, worth 7 points each. This is a closed book test. Anyone caught cheating will receive a score of **zero**.

Problem 1.

(a) Accurately state the Binomial Theorem.

For all integers $n \ge 0$ and all numbers a and b we have

$$(a+b)^{n} = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^{k} b^{n-k}$$

(b) Use Pascal's Triangle to compute the coefficient of x^5 in $(1+x)^7$.

							1							
						1		1						
					1		2		1					
				1		3		3		1				
			1		4		6		4		1			
		1		5		10		10		5		1		
	1		6		15		20		15		6		1	
1		7		21		35		35		21		7		1

(c) Use the formula $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ to compute the coefficient of x^5 in $(1+x)^7$.

$$\binom{7}{5} = \frac{7!}{5!2!} = \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 2 \cdot 1} = \frac{7 \cdot 6}{2} = 21$$

(d) Use the formula $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ to prove that for all $1 \le k \le n-1$ we have $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$

Proof. Applying the formula gives

$$\binom{n-1}{k} + \binom{n-1}{k-1} = \frac{(n-1)!}{k!(n-k-1)!} + \frac{(n-1)!}{(k-1)!(n-k)!}$$

$$= \frac{(n-1)!}{k!(n-k-1)!} \cdot \frac{(n-k)}{(n-k)} + \frac{k}{k} \cdot \frac{(n-1)!}{(k-1)!(n-k)!}$$

$$= \frac{(n-k)(n-1)!}{k!(n-k)!} + \frac{k(n-1)!}{k!(n-k)!}$$

$$= \frac{(n-k)(n-1)! + k(n-1)!}{k!(n-k)!}$$

$$= \frac{[(n-k)+k](n-1)!}{k!(n-k)!}$$

$$= \frac{n(n-1)!}{k!(n-k)!}$$
$$= \frac{n!}{k!(n-k)!}$$
$$= \binom{n}{k}.$$

Problem 2. Fix a nonzero integer $0 \neq n \in \mathbb{Z}$.

(a) If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$ prove that $a + b \equiv a' + b' \pmod{n}$.

Proof. Let $a, b \in \mathbb{Z}$ and assume that $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$. That is, assume that there exist integers k, ℓ such that a - a' = nk and $b - b' = n\ell$. Then we have

$$(a+b) - (a'+b') = (a-a') + (b-b')$$

= $nk + n\ell$
= $n(k + \ell)$,

and it follows that $a + b \equiv a' + b' \pmod{n}$.

(b) If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$ prove that $ab \equiv a'b' \pmod{n}$.

Proof. Let $a, b \in \mathbb{Z}$ and assume that $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$. That is, assume that there exist integers k, ℓ such that a - a' = nk and $b - b' = n\ell$. Then we have

$$ab - a'b' = ab - ab' + ab' - a'b'$$

= $a(b - b') + (a - a')b'$
= $ank + n\ell b'$
= $n(ak + \ell b'),$

and it follows that $ab \equiv a'b' \pmod{n}$.

(c) Accurately state the Principle of Induction.

Let P(n) be a logical statement depending on an integer n. If • P(b) = T, and

• For all integers $k \ge b$ we have $P(k) \Rightarrow P(k+1)$, then it follows that P(n) = T for all $n \ge b$.

(d) Suppose that $a \equiv b \pmod{n}$ and for all $k \geq 0$ let P(k) be the statement that " $a^k \equiv b^k \pmod{n}$ ". Use induction to prove that P(k) = T for all $k \geq 0$. [Hint: You will need to quote the result of part (b).]

Proof. First note that the statement $P(0) = a^0 \equiv b^0 \pmod{n}$ is obviously true. Now fix some integer $k \geq 0$ and assume for induction that P(k) is true. In this case we will show that P(k+1) is also true. Indeed, since $a \equiv b \pmod{n}$ (by assumption) and $a^k \equiv b^k \pmod{n}$ (by P(k)), we conclude from part (b) that

$$a \cdot a^k \equiv b \cdot b^k \pmod{n}$$
$$a^{k+1} \equiv b^{k+1} \pmod{n}.$$

By the Principle of Induction we conclude that P(n) is true for all $n \ge 0$.

Problem 3.

(a) If a|c and b|c with gcd(a, b) = 1, prove that ab|c. [Hint: Bézout.]

Proof. Let a|c and b|c so that c = ak and $c = b\ell$ for some $k, \ell \in \mathbb{Z}$. Since gcd(a, b) = 1, Bézout's Identity says that there exist $x, y \in \mathbb{Z}$ with ax + by = 1. Then multiplying both sides of this equation by c gives

$$ax + by = 1$$
$$c(ax + by) = c$$
$$cax + cby = c$$
$$(b\ell)ax + (ak)by = c$$
$$ab(\ell x + ky) = c,$$

and hence ab|c as desired.

(b) Accurately state Fermat's little Theorem.

Let $b, p \in \mathbb{Z}$ with p prime and $p \nmid b$. Then we have $b^{p-1} \equiv 1 \pmod{p}$.

(c) Suppose that $a, p, q \in \mathbb{Z}$ with p prime. If $p \nmid a$ show that $a^{(p-1)(q-1)} \equiv 1 \pmod{p}$. [Hint: Use Fermat's little Theorem and Problem 2(d).]

Proof. Since $p \nmid a$, Euclid's Lemma implies that $p \nmid a^{q-1}$. Then by Fermat's little Theorem (with $b = a^{q-1}$) we have

$$a^{(p-1)(q-1)} = (a^{q-1})^{p-1} \equiv 1 \pmod{p}$$

[Remark: I wrote this problem in 2013 and I wrote the solution in 2015. I have no idea why Problem 2(d) is necessary for this proof.]

(d) Now suppose that $a, p, q \in \mathbb{Z}$ with p and q both prime. If $p \nmid a$ and $q \nmid a$, use parts (a) and (c) to prove that

$$a^{(p-1)(q-1)} \equiv 1 \pmod{pq}.$$

Proof. Since $p \nmid a$, part (b) shows that $p \mid (a^{(p-1)(q-1)} - 1)$ and since $q \nmid a$ the same argument shows that $q \mid (a^{(p-1)(q-1)} - 1)$. Then since gcd(p,q) = 1, part (a) implies that

$$pq \left| \left(a^{(p-1)(q-1)} - 1 \right) \right|$$

as desired.

$$\Box$$