There are 3 problems, worth 7 points each. This is a closed book test. Anyone caught cheating will receive a score of zero.

Problem 1.

(a) Accurately state the Binomial Theorem.

For all integers $n \geq 0$ and all numbers a and b we have

$$
(a+b)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^{k} b^{n-k}
$$

(b) Use Pascal's Triangle to compute the coefficient of x^{5} in $(1+x)^{7}$.

(c) Use the formula $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ to compute the coefficient of x^{5} in $(1+x)^{7}$.

$$
\binom{7}{5}=\frac{7!}{5!2!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 2 \cdot 1}=\frac{7 \cdot 6}{2}=21 .
$$

(d) Use the formula $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ to prove that for all $1 \leq k \leq n-1$ we have

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Proof. Applying the formula gives

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-k-1)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{k!(n-k-1)!} \cdot \frac{(n-k)}{(n-k)}+\frac{k}{k} \cdot \frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-k)(n-1)!}{k!(n-k)!}+\frac{k(n-1)!}{k!(n-k)!} \\
& =\frac{(n-k)(n-1)!+k(n-1)!}{k!(n-k)!} \\
& =\frac{[(n-k)+k](n-1)!}{k!(n-k)!}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n(n-1)!}{k!(n-k)!} \\
& =\frac{n!}{k!(n-k)!} \\
& =\binom{n}{k} .
\end{aligned}
$$

Problem 2. Fix a nonzero integer $0 \neq n \in \mathbb{Z}$.
(a) If $a \equiv a^{\prime}(\bmod n)$ and $b \equiv b^{\prime}(\bmod n)$ prove that $a+b \equiv a^{\prime}+b^{\prime}(\bmod n)$.

Proof. Let $a, b \in \mathbb{Z}$ and assume that $a \equiv a^{\prime}(\bmod n)$ and $b \equiv b^{\prime}(\bmod n)$. That is, assume that there exist integers k, ℓ such that $a-a^{\prime}=n k$ and $b-b^{\prime}=n \ell$. Then we have

$$
\begin{aligned}
(a+b)-\left(a^{\prime}+b^{\prime}\right) & =\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right) \\
& =n k+n \ell \\
& =n(k+\ell),
\end{aligned}
$$

and it follows that $a+b \equiv a^{\prime}+b^{\prime}(\bmod n)$.
(b) If $a \equiv a^{\prime}(\bmod n)$ and $b \equiv b^{\prime}(\bmod n)$ prove that $a b \equiv a^{\prime} b^{\prime}(\bmod n)$.

Proof. Let $a, b \in \mathbb{Z}$ and assume that $a \equiv a^{\prime}(\bmod n)$ and $b \equiv b^{\prime}(\bmod n)$. That is, assume that there exist integers k, ℓ such that $a-a^{\prime}=n k$ and $b-b^{\prime}=n \ell$. Then we have

$$
\begin{aligned}
a b-a^{\prime} b^{\prime} & =a b-a b^{\prime}+a b^{\prime}-a^{\prime} b^{\prime} \\
& =a\left(b-b^{\prime}\right)+\left(a-a^{\prime}\right) b^{\prime} \\
& =a n k+n \ell b^{\prime} \\
& =n\left(a k+\ell b^{\prime}\right),
\end{aligned}
$$

and it follows that $a b \equiv a^{\prime} b^{\prime}(\bmod n)$.
(c) Accurately state the Principle of Induction.

Let $P(n)$ be a logical statement depending on an integer n. If

- $P(b)=T$, and
- For all integers $k \geq b$ we have $P(k) \Rightarrow P(k+1)$,
then it follows that $P(n)=T$ for all $n \geq b$.
(d) Suppose that $a \equiv b(\bmod n)$ and for all $k \geq 0$ let $P(k)$ be the statement that " $a^{k} \equiv b^{k}(\bmod n)$ ". Use induction to prove that $P(k)=T$ for all $k \geq 0$. [Hint: You will need to quote the result of part (b).]

Proof. First note that the statement $P(0)=" a^{0} \equiv b^{0}(\bmod n) "$ is obviously true. Now fix some integer $k \geq 0$ and assume for induction that $P(k)$ is true. In this case we will show that $P(k+1)$ is also true. Indeed, since $a \equiv b(\bmod n)$ (by assumption) and $a^{k} \equiv b^{k}(\bmod n)($ by $P(k))$, we conclude from part (b) that

$$
\begin{aligned}
a \cdot a^{k} & \equiv b \cdot b^{k} \quad(\bmod n) \\
a^{k+1} & \equiv b^{k+1} \quad(\bmod n) .
\end{aligned}
$$

By the Principle of Induction we conclude that $P(n)$ is true for all $n \geq 0$.

Problem 3.

(a) If $a \mid c$ and $b \mid c$ with $\operatorname{gcd}(a, b)=1$, prove that $a b \mid c$. [Hint: Bézout.]

Proof. Let $a \mid c$ and $b \mid c$ so that $c=a k$ and $c=b \ell$ for some $k, \ell \in \mathbb{Z}$. Since $\operatorname{gcd}(a, b)=1$, Bézout's Identity says that there exist $x, y \in \mathbb{Z}$ with $a x+b y=1$. Then multiplying both sides of this equation by c gives

$$
\begin{aligned}
a x+b y & =1 \\
c(a x+b y) & =c \\
c a x+c b y & =c \\
(b \ell) a x+(a k) b y & =c \\
a b(\ell x+k y) & =c,
\end{aligned}
$$

and hence $a b \mid c$ as desired.
(b) Accurately state Fermat's little Theorem.

Let $b, p \in \mathbb{Z}$ with p prime and $p \nmid b$. Then we have $b^{p-1} \equiv 1(\bmod p)$.
(c) Suppose that $a, p, q \in \mathbb{Z}$ with p prime. If $p \nmid a$ show that $a^{(p-1)(q-1)} \equiv 1(\bmod p)$. [Hint: Use Fermat's little Theorem and Problem 2(d).]
Proof. Since $p \nmid a$, Euclid’s Lemma implies that $p \nmid a^{q-1}$. Then by Fermat's little Theorem (with $b=a^{q-1}$) we have

$$
a^{(p-1)(q-1)}=\left(a^{q-1}\right)^{p-1} \equiv 1 \quad(\bmod p)
$$

[Remark: I wrote this problem in 2013 and I wrote the solution in 2015. I have no idea why Problem 2(d) is necessary for this proof.]
(d) Now suppose that $a, p, q \in \mathbb{Z}$ with p and q both prime. If $p \nmid a$ and $q \nmid a$, use parts (a) and (c) to prove that

$$
a^{(p-1)(q-1)} \equiv 1 \quad(\bmod p q) .
$$

Proof. Since $p \nmid a$, part (b) shows that $p \mid\left(a^{(p-1)(q-1)}-1\right)$ and since $q \nmid a$ the same argument shows that $q \mid\left(a^{(p-1)(q-1)}-1\right)$. Then since $\operatorname{gcd}(p, q)=1$, part (a) implies that

$$
p q \mid\left(a^{(p-1)(q-1)}-1\right)
$$

as desired.

