There are 4 problems, worth 5 points each. This is a closed book test. Anyone caught cheating will receive a score of **zero**.

Problem 1.

(a) Use the Euclidean Algorithm to show that gcd(41, 12) = 1.

	$\gcd(41, 12)$
$41 = 3 \cdot 12 + 5$	$= \gcd(12,5)$
$12 = 2 \cdot 5 + 2$	$= \gcd(5,2)$
$5 = 2 \cdot 2 + 1$	$= \gcd(2,1)$
$2 = 2 \cdot 1 + 0$	$= \gcd(1,0)$
	= 1

(b) Use the Extended Euclidean Algorithm to find one specific solution $x, y \in \mathbb{Z}$ to the equation 41x + 12y = 1.

We consider the triples $x, y, r \in \mathbb{Z}$ such that 41x + 12y = r:

x	y	r
1	0	41
0	1	12
1	-3	5
-2	7	2
5	-17	1
-12	41	0

The second last row says 41(5) + 12(-17) = 1.

(c) Tell me **infinitely many solutions** $x, y \in \mathbb{Z}$ to the equation 41x + 12y = 1. [You don't need to find all of them.]

Combining the last two rows from (b) gives

$$41(5 - 12k) + 12(-17 + 41k) = 1$$
 for all $k \in \mathbb{Z}$.

Problem 2. Fix a nonzero integer $0 \neq n \in \mathbb{Z}$ and define a relation \equiv_n on \mathbb{Z} as follows:

$$a \equiv_n b \quad \iff \quad n|(a-b)|$$

(a) For all $a \in \mathbb{Z}$ prove that $a \equiv_n a$.

Proof. Consider $a \in \mathbb{Z}$. Then we have a - a = 0 and n|0 because 0 = n0. We conclude that $a \equiv_n a$.

(b) For all $a, b \in \mathbb{Z}$ prove that $(a \equiv_n b) \Rightarrow (b \equiv_n a)$.

Proof. Assume that $a \equiv_n b$. This means that n|(a-b), i.e. (a-b) = nk for some $k \in \mathbb{Z}$. But then we have (b-a) = n(-k), hence n|(b-a). We conclude that $b \equiv_n a$.

(c) For all $a, b, c \in \mathbb{Z}$ prove that $(a \equiv_n b \text{ AND } b \equiv_n c) \Rightarrow (a \equiv_n c)$.

Proof. Assume that $a \equiv_n b$ and $b \equiv_n c$. In other words, there exist $k, \ell \in \mathbb{Z}$ such that (a - b) = nk and $(b - c) = n\ell$. Then we have

 $a - c = (a - b) + (b - c) = nk + n\ell = n(k + \ell).$

We conclude that n|(a-c) and hence $a \equiv_n c$.

Problem 3. Let $a, b \in \mathbb{Z}$ and d = gcd(a, b).

(a) Accurately state Bézout's Identity.

There exist $x, y \in \mathbb{Z}$ such that ax + by = d.

(b) If a = da' and b = db', prove that there exist $x, y \in \mathbb{Z}$ such that 1 = a'x + b'y. *Proof.* By Bézout's Identity there exist $x, y \in \mathbb{Z}$ such that ax + by = d. Then

$$ax + by = d,$$

$$da'x + db'y = d,$$

$$d(a'x + b'y) = d.$$

Cancelling d (which is nonzero) from both sides gives a'x + b'y = 1.

(c) Use part (b) to prove that gcd(a', b') = 1.

Proof. Let e be **any** common divisor of a' and b', i.e., suppose we have a' = ea'' and b' = eb'' for some $a'', b'' \in \mathbb{Z}$. Then from part (b) we have

$$a'x + b'y = 1,$$

$$ea''x + eb''y = 1,$$

$$e(a''x + b''y) = 1.$$

We conclude that e|1, which implies that $e = \pm 1$. Thus the **greatest** common divisor of a' and b' is 1.

Problem 4. Consider a sequence of integers $n_1, n_2, n_3, \ldots \in \mathbb{Z}$ such that

 $n_1 > n_2 > n_3 > \dots \ge 0.$

You will prove that there exists some k such that $n_k = 0$.

(a) Accurately state the Well-Ordering Axiom.

Every nonempty set of positive integers has a smallest element.

(b) Assume for contradiction that no such k exists and consider the set $S = \{n_1, n_2, \ldots\}$. What does the Well-Ordering Axiom say about this set?

Assume that $n_k > 0$ for all k. Since S is a nonempty set of positive integers, it has a smallest element. This element has the form n_m for some m.

(c) Use part (b) to derive a contradiction.

Since $n_m \neq 0$ we have $n_m > n_{m+1}$ for some other element $n_{m+1} \in S$. This contradicts the fact that n_m was smallest.

[Note: This result is false over the rational numbers \mathbb{Q} because, for example,

$$1 > \frac{1}{2} > \frac{1}{3} > \frac{1}{4} > \dots \ge 0.$$
]