
Math 230 E Fall 2013
Exam 2 — Fri Nov 8 Drew Armstrong

There are 4 problems, worth 5 points each. This is a closed book test. Anyone caught
cheating will receive a score of zero.

Problem 1.

(a) Use the Euclidean Algorithm to show that gcd(41, 12) = 1.

gcd(41, 12)

41 = 3 · 12 + 5 = gcd(12, 5)

12 = 2 · 5 + 2 = gcd(5, 2)

5 = 2 · 2 + 1 = gcd(2, 1)

2 = 2 · 1 + 0 = gcd(1, 0)

= 1

(b) Use the Extended Euclidean Algorithm to find one specific solution x, y ∈ Z to
the equation 41x + 12y = 1.

We consider the triples x, y, r ∈ Z such that 41x + 12y = r:

x y r
1 0 41
0 1 12
1 −3 5
−2 7 2
5 −17 1
−12 41 0

The second last row says 41(5) + 12(−17) = 1.

(c) Tell me infinitely many solutions x, y ∈ Z to the equation 41x + 12y = 1. [You
don’t need to find all of them.]

Combining the last two rows from (b) gives

41(5− 12k) + 12(−17 + 41k) = 1 for all k ∈ Z.

Problem 2. Fix a nonzero integer 0 6= n ∈ Z and define a relation ≡n on Z as follows:

a ≡n b ⇐⇒ n|(a− b)

(a) For all a ∈ Z prove that a ≡n a.

Proof. Consider a ∈ Z. Then we have a − a = 0 and n|0 because 0 = n0. We
conclude that a ≡n a. �

(b) For all a, b ∈ Z prove that (a ≡n b) ⇒ (b ≡n a).

Proof. Assume that a ≡n b. This means that n|(a− b), i.e. (a− b) = nk for some
k ∈ Z. But then we have (b − a) = n(−k), hence n|(b − a). We conclude that
b ≡n a. �

(c) For all a, b, c ∈ Z prove that (a ≡n b AND b ≡n c) ⇒ (a ≡n c).



Proof. Assume that a ≡n b and b ≡n c. In other words, there exist k, ` ∈ Z such
that (a− b) = nk and (b− c) = n`. Then we have

a− c = (a− b) + (b− c) = nk + n` = n(k + `).

We conclude that n|(a− c) and hence a ≡n c. �

Problem 3. Let a, b ∈ Z and d = gcd(a, b).

(a) Accurately state Bézout’s Identity.

There exist x, y ∈ Z such that ax + by = d.

(b) If a = da′ and b = db′, prove that there exist x, y ∈ Z such that 1 = a′x + b′y.

Proof. By Bézout’s Identity there exist x, y ∈ Z such that ax + by = d. Then

ax + by = d,

da′x + db′y = d,

d(a′x + b′y) = d.

Cancelling d (which is nonzero) from both sides gives a′x + b′y = 1. �

(c) Use part (b) to prove that gcd(a′, b′) = 1.

Proof. Let e be any common divisor of a′ and b′, i.e., suppose we have a′ = ea′′

and b′ = eb′′ for some a′′, b′′ ∈ Z. Then from part (b) we have

a′x + b′y = 1,

ea′′x + eb′′y = 1,

e(a′′x + b′′y) = 1.

We conclude that e|1, which implies that e = ±1. Thus the greatest common
divisor of a′ and b′ is 1. �

Problem 4. Consider a sequence of integers n1, n2, n3, . . . ∈ Z such that

n1 > n2 > n3 > · · · ≥ 0.

You will prove that there exists some k such that nk = 0.

(a) Accurately state the Well-Ordering Axiom.

Every nonempty set of positive integers has a smallest element.

(b) Assume for contradiction that no such k exists and consider the set S = {n1, n2, . . .}.
What does the Well-Ordering Axiom say about this set?

Assume that nk > 0 for all k. Since S is a nonempty set of positive integers, it has
a smallest element. This element has the form nm for some m.

(c) Use part (b) to derive a contradiction.

Since nm 6= 0 we have nm > nm+1 for some other element nm+1 ∈ S. This
contradicts the fact that nm was smallest.

[Note: This result is false over the rational numbers Q because, for example,

1 >
1

2
>

1

3
>

1

4
> · · · ≥ 0.]


