There are 4 problems, worth 5 points each. This is a closed book test. Anyone caught cheating will receive a score of zero.

Problem 1.

(a) Use the Euclidean Algorithm to show that $\operatorname{gcd}(41,12)=1$.

$$
\begin{array}{rrr}
& \operatorname{gcd}(41,12) \\
41 & =3 \cdot 12+5 & =\operatorname{gcd}(12,5) \\
12 & =2 \cdot 5+2 & =\operatorname{gcd}(5,2) \\
5 & =2 \cdot 2+1 & =\operatorname{gcd}(2,1) \\
2=2 \cdot 1+0 & =\operatorname{gcd}(1,0)
\end{array}
$$

(b) Use the Extended Euclidean Algorithm to find one specific solution $x, y \in \mathbb{Z}$ to the equation $41 x+12 y=1$.

We consider the triples $x, y, r \in \mathbb{Z}$ such that $41 x+12 y=r:$

x	y	r
1	0	41
0	1	12
1	-3	5
-2	7	2
5	-17	1
-12	41	0

The second last row says $41(\mathbf{5})+12(-\mathbf{1 7})=1$.
(c) Tell me infinitely many solutions $x, y \in \mathbb{Z}$ to the equation $41 x+12 y=1$. [You don't need to find all of them.]
Combining the last two rows from (b) gives

$$
41(\mathbf{5}-\mathbf{1 2 k})+12(-\mathbf{1 7}+\mathbf{4 1} \mathbf{k})=1 \quad \text { for all } k \in \mathbb{Z}
$$

Problem 2. Fix a nonzero integer $0 \neq n \in \mathbb{Z}$ and define a relation \equiv_{n} on \mathbb{Z} as follows:

$$
a \equiv_{n} b \quad \Longleftrightarrow \quad n \mid(a-b)
$$

(a) For all $a \in \mathbb{Z}$ prove that $a \equiv_{n} a$.

Proof. Consider $a \in \mathbb{Z}$. Then we have $a-a=0$ and $n \mid 0$ because $0=n 0$. We conclude that $a \equiv_{n} a$.
(b) For all $a, b \in \mathbb{Z}$ prove that $\left(a \equiv_{n} b\right) \Rightarrow\left(b \equiv_{n} a\right)$.

Proof. Assume that $a \equiv_{n} b$. This means that $n \mid(a-b)$, i.e. $(a-b)=n k$ for some $k \in \mathbb{Z}$. But then we have $(b-a)=n(-k)$, hence $n \mid(b-a)$. We conclude that $b \equiv_{n} a$.
(c) For all $a, b, c \in \mathbb{Z}$ prove that $\left(a \equiv_{n} b\right.$ AND $\left.b \equiv_{n} c\right) \Rightarrow\left(a \equiv_{n} c\right)$.

Proof. Assume that $a \equiv_{n} b$ and $b \equiv_{n} c$. In other words, there exist $k, \ell \in \mathbb{Z}$ such that $(a-b)=n k$ and $(b-c)=n \ell$. Then we have

$$
a-c=(a-b)+(b-c)=n k+n \ell=n(k+\ell) .
$$

We conclude that $n \mid(a-c)$ and hence $a \equiv_{n} c$.

Problem 3. Let $a, b \in \mathbb{Z}$ and $d=\operatorname{gcd}(a, b)$.
(a) Accurately state Bézout's Identity.

There exist $x, y \in \mathbb{Z}$ such that $a x+b y=d$.
(b) If $a=d a^{\prime}$ and $b=d b^{\prime}$, prove that there exist $x, y \in \mathbb{Z}$ such that $1=a^{\prime} x+b^{\prime} y$.

Proof. By Bézout's Identity there exist $x, y \in \mathbb{Z}$ such that $a x+b y=d$. Then

$$
\begin{array}{r}
a x+b y=d, \\
d a^{\prime} x+d b^{\prime} y=d, \\
d\left(a^{\prime} x+b^{\prime} y\right)=d .
\end{array}
$$

Cancelling d (which is nonzero) from both sides gives $a^{\prime} x+b^{\prime} y=1$.
(c) Use part (b) to prove that $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$.

Proof. Let e be any common divisor of a^{\prime} and b^{\prime}, i.e., suppose we have $a^{\prime}=e a^{\prime \prime}$ and $b^{\prime}=e b^{\prime \prime}$ for some $a^{\prime \prime}, b^{\prime \prime} \in \mathbb{Z}$. Then from part (b) we have

$$
\begin{aligned}
a^{\prime} x+b^{\prime} y & =1, \\
e a^{\prime \prime} x+e b^{\prime \prime} y & =1, \\
e\left(a^{\prime \prime} x+b^{\prime \prime} y\right) & =1 .
\end{aligned}
$$

We conclude that $e \mid 1$, which implies that $e= \pm 1$. Thus the greatest common divisor of a^{\prime} and b^{\prime} is 1 .

Problem 4. Consider a sequence of integers $n_{1}, n_{2}, n_{3}, \ldots \in \mathbb{Z}$ such that

$$
n_{1}>n_{2}>n_{3}>\cdots \geq 0 .
$$

You will prove that there exists some k such that $n_{k}=0$.
(a) Accurately state the Well-Ordering Axiom.

Every nonempty set of positive integers has a smallest element.
(b) Assume for contradiction that no such k exists and consider the set $S=\left\{n_{1}, n_{2}, \ldots\right\}$. What does the Well-Ordering Axiom say about this set?

Assume that $n_{k}>0$ for all k. Since S is a nonempty set of positive integers, it has a smallest element. This element has the form n_{m} for some m.
(c) Use part (b) to derive a contradiction.

Since $n_{m} \neq 0$ we have $n_{m}>n_{m+1}$ for some other element $n_{m+1} \in S$. This contradicts the fact that n_{m} was smallest.
[Note: This result is false over the rational numbers \mathbb{Q} because, for example,

$$
\left.1>\frac{1}{2}>\frac{1}{3}>\frac{1}{4}>\cdots \geq 0 .\right]
$$

