There are 4 problems, worth 5 points each. This is a closed book test. Anyone caught cheating will receive a score of zero.

Problem 1. Let $a, b, q, r \in \mathbb{Z}$ be integers such that $a=q b+r$, and consider any $d \in \mathbb{Z}$.
(a) State the definition of the symbol " $d \mid a$ ".

There exists $a^{\prime} \in \mathbb{Z}$ such that $a=d a^{\prime}$.
(b) Prove that " $(d \mid a$ AND $d \mid b) \Rightarrow d \mid r$ ".

Proof. Assume that $d \mid a$ and $d \mid b$, that is, there exist $a^{\prime}, b^{\prime} \in \mathbb{Z}$ such that $a=d a^{\prime}$ and $b=d b^{\prime}$. Then we have

$$
r=a-q b=d a^{\prime}-q d b^{\prime}=d\left(a^{\prime}-q b^{\prime}\right)
$$

hende $d \mid r$.
(c) Prove that " $(d \mid b$ AND $d \mid r) \Rightarrow d \mid a "$.

Proof. Assume that $d \mid b$ and $d \mid r$, that is, there exist $b^{\prime}, r^{\prime} \in \mathbb{Z}$ such that $b=d b^{\prime}$ and $r=d r^{\prime}$. Then we have

$$
a=q b+r=q d b^{\prime}+d r^{\prime}=d\left(q b^{\prime}+r^{\prime}\right)
$$

hence $d \mid a$.

Problem 2.

(a) Use a truth table to prove that "NOT $(P$ OR $Q) " \equiv "(N O T P)$ AND $(N O T Q) "$.

Proof.

P	Q	P OR Q	$\operatorname{NOT}(P$ OR $Q)$	NOT P	NOT Q	$(\mathrm{NOT} P) \mathrm{AND}(\mathrm{NOT} Q)$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

(b) Let $m, n \in \mathbb{Z}$. What is the contrapositive of the following statement?

$$
"(m+n \text { is odd }) \Rightarrow(m \text { is odd }) \text { OR }(n \text { is odd }) "
$$

By part (a), the contrapositive statement is

$$
"(m \text { is even }) \text { AND }(n \text { is even }) \Rightarrow(m+n \text { is even }) "
$$

(c) Prove the statement from part (b).

Proof. Assume that m is even and n is even, that is, there exist $m^{\prime}, n^{\prime} \in \mathbb{Z}$ such that $m=2 m^{\prime}$ and $n=2 n^{\prime}$. Then we have have

$$
m+n=2 m^{\prime}+2 n^{\prime}=2\left(m^{\prime}+n^{\prime}\right)
$$

hence $m+n$ is even.

Problem 3.

(a) Accurately state the Division Algorithm (Theorem).

For all $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist unique $q, r \in \mathbb{Z}$ with the properties

- $a=q b+r$,
- $0 \leq r<|b|$.
(b) We say that an integer $n \in \mathbb{Z}$ is even if there exists $q \in \mathbb{Z}$ such that $n=q 2$. Use the Division Algorithm to prove that 3 is not even. [Hint: Assume for contradiction that 3 is even. Divide 3 by 2 and think about the remainder.]

Proof. Assume for contradiction that 3 is even, that is, there exists $q \in \mathbb{Z}$ such that $3=q 2$. Then we have $3=q 2+0$ with $0 \leq 0<|2|$. But we also have $3=1 \cdot 2+1$ with $0 \leq 1<|2|$. By the uniqueness of the remainder (Division Algorithm), we conclude that $0=1$. This contradiction proves that 3 is not even.

Problem 4. In this problem (and only in this problem) you may use the notation $\frac{a}{b}$. You may also assume that for all $n \in \mathbb{Z}$ the statement " $3\left|n^{2} \Rightarrow 3\right| n$ " is true.
(a) Prove that if $\sqrt{3}$ is not a fraction, then $\sqrt{12}$ is not a fraction. [Hint: $\sqrt{12}=2 \sqrt{3}$.]

Proof. We will prove the contrapositive statement. So assume that $\sqrt{12}$ is a fraction, say $\sqrt{12}=\frac{a}{b}$. Then we have

$$
2 \sqrt{3}=\sqrt{12}=\frac{a}{b} \Rightarrow \sqrt{3}=\frac{a}{2 b}
$$

hence $\sqrt{3}$ is a fraction.
(b) Let Q be the statement " $\sqrt{3}=\frac{a}{b}$ for some $a, b \in \mathbb{Z}$ with no common factor". Use the method of contradiction to prove that Q is false. [Hint: Assume that Q is true.]

Proof. Assume for contradiction that we can write $\sqrt{3}=\frac{a}{b}$ where $a, b \in \mathbb{Z}$ have no common factor. Multiplying both sides by b gives $a=b \sqrt{3}$ and squaring gives $a^{2}=3 b^{2}$. Since $3 \mid a^{2}$ we have $3 \mid a$, say $a=3 k$. But then $3 b^{2}=a^{2}=9 k^{2}$, hence $b^{2}=3 k^{3}$. We conclude that $3 \mid b^{2}$ and hence $b \mid 3$. Thus a and b are both divisible by 3 , which contradicts the fact that they have no common divisor. Hence our original assumption is false.
(c) Let $P=" \sqrt{3}$ is a fraction". You may assume that $P \Rightarrow Q$ is true. Now put parts (a) and (b) together to prove that $\sqrt{12}$ is not a fraction.

Proof. We proved in part (b) that NOT Q is true. By the contrapositive, this proves that NOT P is true, that is, $\sqrt{3}$ is not a fraction. By part (a) this implies that $\sqrt{12}$ is not a fraction.

