There are 4 problems, worth 5 points each. This is a closed book test. Anyone caught cheating will receive a score of **zero**.

Problem 1. Let $a, b, q, r \in \mathbb{Z}$ be integers such that a = qb + r, and consider any $d \in \mathbb{Z}$.

(a) State the definition of the symbol "d|a".

There exists $a' \in \mathbb{Z}$ such that a = da'.

(b) Prove that " $(d|a \text{ AND } d|b) \Rightarrow d|r$ ".

Proof. Assume that d|a and d|b, that is, there exist $a', b' \in \mathbb{Z}$ such that a = da' and b = db'. Then we have

$$r = a - qb = da' - qdb' = d(a' - qb'),$$

hende d|r.

(c) Prove that " $(d|b \text{ AND } d|r) \Rightarrow d|a$ ".

Proof. Assume that d|b and d|r, that is, there exist $b', r' \in \mathbb{Z}$ such that b = db' and r = dr'. Then we have

$$a = qb + r = qdb' + dr' = d(qb' + r'),$$

hence d|a.

Problem 2.

(a) Use a truth table to prove that "NOT (P OR Q)" \equiv "(NOT P) AND (NOT Q)".

Proof.

P	Q	P OR Q	$NOT \left(P \text{ OR } Q \right)$	NOT P	$\operatorname{NOT} Q$	(NOT P) AND (NOT Q)
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

(b) Let $m, n \in \mathbb{Z}$. What is the **contrapositive** of the following statement? " $(m + n \text{ is odd}) \Rightarrow (m \text{ is odd}) \text{ OR } (n \text{ is odd})$ "

By part (a), the contrapositive statement is "(*m* is even) AND (*n* is even) \Rightarrow (*m* + *n* is even)"

(c) Prove the statement from part (b).

Proof. Assume that m is even and n is even, that is, there exist $m', n' \in \mathbb{Z}$ such that m = 2m' and n = 2n'. Then we have

$$m + n = 2m' + 2n' = 2(m' + n'),$$

hence m + n is even.

Problem 3.

(a) Accurately state the Division Algorithm (Theorem).

For all $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist unique $q, r \in \mathbb{Z}$ with the properties • a = qb + r, • $0 \leq r < |b|$.

(b) We say that an integer $n \in \mathbb{Z}$ is **even** if there exists $q \in \mathbb{Z}$ such that n = q2. Use the Division Algorithm to **prove** that 3 is not even. [Hint: Assume for contradiction that 3 is even. Divide 3 by 2 and think about the remainder.]

Proof. Assume for contradiction that 3 is even, that is, there exists $q \in \mathbb{Z}$ such that 3 = q2. Then we have 3 = q2+0 with $0 \le 0 < |2|$. But we also have $3 = 1 \cdot 2+1$ with $0 \le 1 < |2|$. By the uniqueness of the remainder (Division Algorithm), we conclude that 0 = 1. This contradiction proves that 3 is not even.

Problem 4. In this problem (and only in this problem) you may use the notation $\frac{a}{b}$. You may also assume that for all $n \in \mathbb{Z}$ the statement " $3|n^2 \Rightarrow 3|n$ " is true.

(a) Prove that if $\sqrt{3}$ is not a fraction, then $\sqrt{12}$ is not a fraction. [Hint: $\sqrt{12} = 2\sqrt{3}$.]

Proof. We will prove the contrapositive statement. So assume that $\sqrt{12}$ is a fraction, say $\sqrt{12} = \frac{a}{b}$. Then we have

$$2\sqrt{3} = \sqrt{12} = \frac{a}{b} \Rightarrow \sqrt{3} = \frac{a}{2b},$$

hence $\sqrt{3}$ is a fraction.

(b) Let Q be the statement " $\sqrt{3} = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$ with no common factor". Use the method of contradiction to prove that Q is false. [Hint: Assume that Q is true.]

Proof. Assume for contradiction that we can write $\sqrt{3} = \frac{a}{b}$ where $a, b \in \mathbb{Z}$ have no common factor. Multiplying both sides by b gives $a = b\sqrt{3}$ and squaring gives $a^2 = 3b^2$. Since $3|a^2$ we have 3|a, say a = 3k. But then $3b^2 = a^2 = 9k^2$, hence $b^2 = 3k^3$. We conclude that $3|b^2$ and hence b|3. Thus a and b are both divisible by 3, which contradicts the fact that they have no common divisor. Hence our original assumption is false.

(c) Let $P = \sqrt[n]{\sqrt{3}}$ is a fraction". You may assume that $P \Rightarrow Q$ is true. Now put parts (a) and (b) together to prove that $\sqrt{12}$ is not a fraction.

Proof. We proved in part (b) that NOT Q is true. By the contrapositive, this proves that NOT P is true, that is, $\sqrt{3}$ is not a fraction. By part (a) this implies that $\sqrt{12}$ is not a fraction.