Problem 1. For each integer $n \geq 0$, let $P(n)$ be the statement: "any set of size n has 2^{n} subsets." Use induction to prove that $P(n)$ is true for all $n \geq 0$. [Hint: Let A be an arbitrary set of size n and let $x \in A$ be some fixed element. Then every subset of A either contains x or does not. How many subsets are there of each type? [Hint: By induction, there are 2^{n-1} subsets of A that do not contain x, since these are just the subsets of $A \backslash\{x\}$. Show that there are also 2^{n-1} subsets that do contain x.]]
Proof. We wish to show that $P(n)=T$ for all $n \geq 0$. First note that $P(0)=T$ because there is only one set of size 0 - the empty set \emptyset - and it has exactly $2^{0}=1$ subset - itself. Now fix an arbitrary $k \geq 0$ and (OPEN MENTAL PARENTHESIS. suppose that $P(k)=T$. In this case we wish to show that $P(k+1)=T$. So let A be an arbitrary set of size $k+1$ and fix some element $x \in A$. Each subset of A either contains x or does not. The subsets of A that do not contain x are precisely the subsets of $A \backslash\{x\}$, and since $P(k)=T$ we know there are 2^{k} of these. On the other hand, for each subset of A that does not contain x there is a unique subset that does - namely, we just add x. Hence there are also 2^{k} of these. We conclude that A has $2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1}$ subsets, hence $P(k+1)=T$. CLOSE MENTAL PARENTHESIS.) We have shown that $P(0)=T$ and $P(k) \Rightarrow P(k+1)$ for all $k \geq 0$. By induction we conclude that $P(n)=T$ for all $n \geq 0$.

Problem 2.

(a) Let $a, b, c \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. If $a \mid c$ and $b \mid c$, prove that $a b \mid c$. [Hint: Use Bézout to write $a x+b y=1$ and multiply both sides by c.]
(b) In class we proved Fermat's little Theorem, which says that if $p \in \mathbb{Z}$ is prime and $\operatorname{gcd}(a, p)=1$ (i.e. if p doesn't divide a), then we have $a^{p-1}=1 \bmod p$. To apply this to cryptography we need a slightly more general result:

Given integers $a, p, q \in \mathbb{Z}$ with p and q prime and with $\operatorname{gcd}(a, p q)=1$ (i.e. with $p \nmid a$ and $q \nmid a)$, we have $a^{(p-1)(q-1)}=1 \bmod p q$.
Prove this result. [Hint: You may assume Fermat's little Theorem. First prove that q divides $a^{(p-1)(q-1)}-1$. The same argument works for p. Then use part (a).]
Proof. To prove (a) suppose that $a \mid c$ and $b \mid c$ (say $c=a k$ and $c=b \ell$) with a, b coprime. By Bézout, there exist integers $x, y \in \mathbb{Z}$ such that $a x+b y=1$. Multiply both sides by c to get

$$
\begin{aligned}
a x+b y & =1 \\
(a x+b y) c & =c \\
a x c+b y c & =c \\
a x b \ell+b y a k & =c \\
a b(x \ell+y k) & =c,
\end{aligned}
$$

hence $a b \mid c$. To prove (b) consider $a, p, q \in \mathbb{Z}$ with p and q prime and with $\operatorname{gcd}(a, p q)=1$ (i.e. with $p \nmid a$ and $q \nmid a$). We wish to show that $p q$ divides $a^{(p-1)(q-1)}-1$. To see this, first note that q does not divide a^{p-1} since if it did then q would also divide a (by the Extended Euclid's Lemma HW5.2), contradiction. Hence by Fermat's little Theorem we conclude that q divides $\left(a^{p-1}\right)^{q-1}-1=a^{(p-1)(q-1)}-1$. Similarly we see that p divides $a^{(p-1)(q-1)}-1$. Then since p and q are coprime (indeed, they are both prime), part (a) implies that $p q$ divides $a^{(p-1)(q-1)}-1$, as desired.
[I agree, it doesn't seem that this should be the foundation of modern cryptography, but it is.]

Problem 3. Use the Binomial Theorem to prove the following:
(a) $\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^{n}$ for all $n \geq 1$.
(b) $\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+(-1)^{n}\binom{n}{n}=0$ for all $n \geq 1$.
(c) $0\binom{n}{0}+1\binom{n}{1}+2\binom{n}{2}+\cdots+n\binom{n}{n}=n 2^{n-1}$ for all $n \geq 1$.
[Hint: The proofs are one-liners. What is the derivative $\frac{d}{d x}$ of $(1+x)^{n}$?]
Proof. Recall the Binomial Theorem:

$$
\begin{equation*}
(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n} x^{n} . \tag{1}
\end{equation*}
$$

Since this is an equation of polynomials, it remains true if we substitute any value for x. Putting $x=1$ in equation (1) yields

$$
2^{n}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n},
$$

and putting $x=-1$ in equation (1) yields

$$
0=0^{n}=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+(-1)^{n}\binom{n}{n} .
$$

We may also differentiate equation (1) by x to get another equation of polynomials:

$$
\begin{equation*}
n(1+x)^{n-1}=0\binom{n}{0}+1\binom{n}{1}+2\binom{n}{2} x+\cdots+n\binom{n}{n} x^{n-1} . \tag{2}
\end{equation*}
$$

Then putting $x=1$ in equation (2) yields

$$
n 2^{n-1}=0\binom{n}{0}+1\binom{n}{1}+2\binom{n}{2}+\cdots+n\binom{n}{n} .
$$

Problem 4. Note that we can write

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{(n)_{k}}{k!},
$$

where $(n)_{k}:=n(n-1) \cdots(n-(k-1))$. Why would we do this? Because the expression $(z)_{k}$ makes sense for any positive integer k and any complex number $z \in \mathbb{C}$. Thus we can define $\binom{z}{k}:=(z)_{k} / k!$ for any $k \in \mathbb{N}$ and $z \in \mathbb{C}$. Prove that for all $n, k \in \mathbb{N}$ we have

$$
\binom{-n}{k}=(-1)^{k}\binom{n+k-1}{k} .
$$

Proof. Let $n, k \in \mathbb{N}$ be positive integers. Then we have

$$
\begin{aligned}
\binom{-n}{k}=\frac{(-n)_{k}}{k!} & =\frac{(-n)(-n-1)(-n-2) \cdots(-n-(k-1))}{k!} \\
& =\frac{(-1)^{k}(n)(n+1)(n+2) \cdots(n+(k-1))}{k!} \\
& =(-1)^{k} \frac{(n+k-1)(n+k-2) \cdots(n+2)(n+1)(n)}{k!} \\
& =(-1)^{k} \frac{(n+k-1)_{k}}{k!}=(-1)^{k}\binom{n+k-1}{k} .
\end{aligned}
$$

[One could alternatively show that $\binom{-n}{k}$ satisfies the correct recurrence and initial conditions.]
Problem 5. Let $x, z \in \mathbb{C}$ be complex numbers with $|x|<1$. Newton's Binomial Theorem says that

$$
(1+x)^{z}=1+\binom{z}{1} x+\binom{z}{2} x^{2}+\binom{z}{3} x^{3}+\cdots
$$

where the right hand side is a convergent infinite series. Use this to obtain an infinite series expansion of $(1+x)^{-2}$ when $|x|<1$. [Hint: Apply Problem 4.]

By Problem 4, we know that

$$
\binom{-2}{k}=(-1)^{k}\binom{2+k-1}{k}=(-1)^{k}\binom{k+1}{k}=(-1)^{k}(k+1)
$$

for all $k \in \mathbb{N}$. Then for any $x \in \mathbb{C}$ with $|x|<1$, Newton tells us that

$$
\frac{1}{(1+x)^{2}}=1-2 x+3 x^{2}-4 x^{3}+\cdots=\sum_{k \geq 0}(-1)^{k}(k+1) x^{k},
$$

where the infinite series on the right is convergent. We could alternatively get this by differentiating the well-known geometric series

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}-\cdots .
$$

What do you get if you integrate the geometric series? Answer:

$$
\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots .
$$

The geometric series is useful.

