Problem 1. For each integer $n \geq 0$, let $P(n)$ be the statement: "any set of size n has 2^{n} subsets." Use induction to prove that $P(n)$ is true for all $n \geq 0$. [Hint: Let A be an arbitrary set of size n and let $x \in A$ be some fixed element. Then every subset of A either contains x or does not. How many subsets are there of each type? [Hint: By induction, there are 2^{n-1} subsets of A that do not contain x, since these are just the subsets of $A \backslash\{x\}$. Show that there are also 2^{n-1} subsets that do contain x.]]

Problem 2.

(a) Let $a, b, c \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. If $a \mid c$ and $b \mid c$, prove that $a b \mid c$. [Hint: Use Bézout to write $a x+b y=1$ and multiply both sides by c.]
(b) In class we proved Fermat's little Theorem, which says that if $p \in \mathbb{Z}$ is prime and $\operatorname{gcd}(a, p)=1$ (i.e. if p doesn't divide a), then we have $a^{p-1}=1 \bmod p$. To apply this to cryptography we need a slightly more general result:

Given integers $a, p, q \in \mathbb{Z}$ with p and q prime and with $\operatorname{gcd}(a, p q)=1$ (i.e. with $p \nmid a$ and $q \nmid a)$, we have $a^{(p-1)(q-1)}=1 \bmod p q$.
Prove this result. [Hint: You may assume Fermat's little Theorem. First prove that q divides $a^{(p-1)(q-1)}-1$. The same argument works for p. Then use part (a).]

Problem 3. Use the Binomial Theorem to prove the following:
(a) $\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^{n}$ for all $n \geq 1$.
(b) $\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+(-1)^{n}\binom{n}{n}=0$ for all $n \geq 1$.
(c) $0\binom{n}{0}+1\binom{n}{1}+2\binom{n}{2}+\cdots+n\binom{n}{n}=n 2^{n-1}$ for all $n \geq 1$.
[Hint: The proofs are one-liners. What is the derivative $\frac{d}{d x}$ of $(1+x)^{n}$?]
Problem 4. Note that we can write

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{(n)_{k}}{k!},
$$

where $(n)_{k}:=n(n-1) \cdots(n-(k-1))$. Why would we do this? Because the expression $(z)_{k}$ makes sense for any positive integer k and any complex number $z \in \mathbb{C}$. Thus we can define $\binom{z}{k}:=(z)_{k} / k!$ for any $k \in \mathbb{N}$ and $z \in \mathbb{C}$. Prove that for all $n, k \in \mathbb{N}$ we have

$$
\binom{-n}{k}=(-1)^{k}\binom{n+k-1}{k} .
$$

Problem 5. Let $x, z \in \mathbb{C}$ be complex numbers with $|x|<1$. Newton's Binomial Theorem says that

$$
(1+x)^{z}=1+\binom{z}{1} x+\binom{z}{2} x^{2}+\binom{z}{3} x^{3}+\cdots
$$

where the right hand side is a convergent infinite series. Use this to obtain an infinite series expansion of $(1+x)^{-2}$ when $|x|<1$. [Hint: Apply Problem 4.]

