Problem 1. Recall that $a \equiv b \mod n$ means that n|(a - b). Use induction to prove that for all $n \geq 2$, the following holds:

"if $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ such that each $a_i \equiv 1 \mod 4$, then $a_1 a_2 \cdots a_n \equiv 1 \mod 4$." [Hint: Call the statement P(n). Note that P(n) is a statement about all collections of n inegers. Therefore, when proving $P(k) \Rightarrow P(k+1)$ you must say "Assume that P(k) = T and consider any $a_1, a_2, \ldots, a_{k+1} \in \mathbb{Z}$." What is the base case?]

Proof. Let P(n) be the statement: "For any collection of n integers $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ such that $a_i \equiv 1 \mod 4$ for all $1 \leq i \leq n$, we have $a_1 a_2 \cdots a_n \equiv 1 \mod 4$." Note that the statement P(2) is true, since given any $a_1, a_2 \in \mathbb{Z}$ with $a_1 = 4k_1 + 1$ and $a_2 = 4k_2 + 1$, we have

 $a_1a_2 = (4k_1 + 1)(4k_2 + 1) = 16k_1k_2 + 4(k_1 + k_2) + 1 = 4(4k_1k_2 + k_1 + k_2) + 1.$

Now **assume** that the statement P(k) is true for some (fixed, but arbitrary) $k \ge 2$. In this case, we wish to show that P(k+1) is also true. So consider any collection of k+1 integers $a_1, a_2, \ldots, a_{k+1} \in \mathbb{Z}$ such that $a_i \equiv 1 \mod 4$ for all $1 \le i \le k+1$, and then consider the product $a_1a_2 \cdots a_{k+1}$. If we let $b = a_1a_2 \cdots a_k$, then since P(k) is true, we know that $b \equiv 1 \mod 4$. But then since P(2) is true we have

$$a_1 a_2 \cdots a_{k+1} \equiv b a_{k+1} \equiv 1 \mod 4,$$

as desired. By induction, we conclude that P(n) is true for all $n \ge 2$.

[I left some of the logical parentheses to the imagination. Do you know where they should be?]

Problem 2. Use induction to prove that for all integers $n \ge 2$ the following statement holds: "If p is prime and $p|a_1a_2\cdots a_n$ for some integers $a_1, a_2, \ldots, a_n \ge 2$, then there exists i such that $p|a_i$." [Hint: Call the statement P(n). Use Euclid's Lemma for the induction step. You don't need to prove it again. In fact, there's no new math in this problem; just setting up notation and not getting confused.]

Proof. Let P(n) be the statement: "For any collection of n integers $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ and any prime number $p \in \mathbb{Z}$, if p divides the product $a_1 \cdots a_n$, then there exists some $1 \leq i \leq n$ such that p divides a_i ." Note that P(2) is exactly Euclid's Lemma, which is true. Now **assume** that the statement P(k) is true for some (fixed, but arbitrary) $k \geq 2$. In this case, we wish to show that P(k+1) is also true. So consider any collection of k+1 integers $a_1, \ldots, a_{k+1} \in \mathbb{Z}$, let $p \in \mathbb{Z}$ be any prime number, and suppose that p divides $a_1 \cdots a_{k+1}$. If we let $b = a_1 \cdots a_k$ then since $p|ba_{k+1}$, Euclid's Lemma says that $p|a_{k+1}$, in which case we're done, or p|b. But if p|b then since P(k) is true there exists some $1 \leq i \leq k$ such that $p|a_i$. In any case, there exists some $1 \leq j \leq k+1$ such that $p|a_j$, hence P(k+1) is true. By induction, we conclude that P(n) is true for all $n \geq 2$.

[Again, I went for style over absolute precision. I think you're ready for it.]

Problem 3. Use induction to prove that for all integers $n \ge 1$ we have

" $1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$."

This result appears in the Aryabhatiya of Aryabhata (499 CE, when he was 23 years old). [Hint: You may assume the result $1 + 2 + \cdots + n = n(n+1)/2$.] *Proof.* Let P(n) be the statement:

"
$$1^3 + 2^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2 = \frac{n^2(n+1)^2}{4}.$$
"

Note that the statement P(1) is true since $1^3 = (1^2 \cdot 2^2)/4$. Now **assume** that P(k) is true for some (fixed, but arbitrary) $k \ge 1$. That is, assume $1^3 + 2^3 + \cdots + k^3 = k^2(k+1)^2/4$. In this case, we wish to show that P(k+1) is also true. Indeed, we have

$$1^{3} + 2^{3} + \dots + (k+1)^{3} = (1^{3} + 2^{3} + \dots + k^{3}) + (k+1)^{3}$$
$$= \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$
$$= (k+1)^{2} \left[\frac{k^{2}}{4} + (k+1)\right]$$
$$= \frac{(k+1)^{2}}{4} \left[k^{2} + 4k + 4\right]$$
$$= \frac{(k+1)^{2}}{4} (k+2)^{2}$$
$$= \frac{(k+1)^{2}((k+1)+1)^{2}}{4},$$

hence P(k+1) is true. By induction we conclude that P(n) is true for all $n \ge 1$.

Problem 4. Consider the following two statements/principles.

PSI: If $P : \mathbb{N} \to \{T, F\}$ is a family of statements satisfying

- P(1) = T, and
- for any $k \ge 1$ we have $[P(1) = P(2) = \dots = P(k) = T] \Rightarrow [P(k+1) = T].$

then P(n) = T for all $n \in \mathbb{N}$.

WO: Every nonempty subset $K \subseteq \mathbb{N} = \{1, 2, 3, ...\}$ has a least element.

Now **Prove** that $\mathsf{PSI} \Rightarrow \mathsf{WO}$. [Hint: Assume PSI and show that the (equivalent) contrapositive of WO holds; i.e., that if $K \subseteq \mathbb{N}$ has **no** least element then $K = \emptyset$. To do this you can use PSI to show that the complement K^c is all of \mathbb{N} . Let P(n) be the statement " $n \in K^c$ " and show using PSI that P(n) = T for all $n \in \mathbb{N}$.]

Proof. We wish to show that $\mathsf{PSI} \Rightarrow \mathsf{WO}$. So (OPEN MENTAL PARENTHESIS. assume that PSI holds. In this case we wish to show that WO holds. We will do this by showing the contrapositive statement: that if $K \subseteq \mathbb{N}$ has **no** least element then $K = \emptyset$. So (OPEN MENTAL PARENTHESIS. suppose that $K \subseteq \mathbb{N}$ has no least element. In this case we wish to show that $K = \emptyset$. We will use PSI (which is true in this universe) to prove the equivalent statement $K^c = \mathbb{N}$. So let $P(n) = "n \in K^c"$. We wish to show that P(n) = T for all $n \in \mathbb{N}$. First note that $1 \in K^c$ since otherwise $1 \in K$ would be the least element of K, which contradicts our assumption that K has no least element. Next, fix an arbitrary $k \in \mathbb{N}$ and (OPEN MENTAL PARENTHESIS. suppose that $P(1) = P(2) = \cdots = P(k) = T$; i.e. suppose that $1, 2, \ldots, k \in K^c$. In this case we wish to show that P(k + 1) = T; i.e. that $k + 1 \in K^c$. But this is true because otherwise $k + 1 \in K$ is the least element of K (since by assumption $1, 2, \ldots, k \notin K$) which contradicts our assumption that K has no least element. Hence P(k + 1) = T. CLOSE MENTAL PARENTHESIS.) We have shown that P(1) = Tand that $P(1) = \cdots = P(k) = T$ implies P(k + 1) = T for all $k \in \mathbb{N}$. By the PSI we conclude that P(n) = T for all $n \in \mathbb{N}$. In other words, $K^c = \mathbb{N}$, or $K = \emptyset$. CLOSE MENTAL PARENTHESIS.) We conclude that WO holds. CLOSE MENTAL PARENTHESIS.) Hence $\mathsf{PSI} \Rightarrow \mathsf{WO}$.

Problem 5. Let d(n) be the number of binary strings of length n that contain no consecutive 1's. For example, there are 5 such strings of length 3:

000, 100, 010, 001, 101.

Hence d(3) = 5. Prove that d(n) are (essentially) the Fibonacci numbers, and hence give a closed formula for d(n). [Hint: First show that d(n) = d(n-1) + d(n-2) for all $n \ge 3$. [Hint: The first digit (actually, bit) of a string can be either 1 or 0.] Then use PSI.]

First we will prove a **Lemma:** We have d(n) = d(n-1) + d(n-2) for all $n \ge 3$.

Proof. We wish to count the binary strings of length n with no consecutive 1's. There are two cases: The first bit is either 0 or 1. If the first bit is 0, then the remaining n-1 bits can be any string that avoids consecutive 1's, and by definition there are d(n-1) of these. If the first bit is 1, then the second bit **must** be 0 (otherwise the first two bits are 11). After this there are by definition d(n-2) ways to complete the string. We conclude that d(n) = d(n-1) + d(n-2).

Now we prove the theorem.

Proof. Recall that the Fibonacci numbers are defined by f(0) = 0, f(1) = 1, and f(n) = f(n-1) + f(n-2) for all $n \ge 2$. We wish to show that d(n) = f(n+2). So let P(n) ="d(n) = f(n+2)". One can check that P(1) = P(2) = T (and we even know P(3) = T, though we don't need it). Now fix an arbitrary $k \ge 3$ and (OPEN MENTAL PARENTHESIS. assume that P(n) = T for all $1 \le n \le k$. In this case we wish to show that P(k+1) = T; i.e. that d(k+1) = f(k+3). By assumption we have d(k) = f(k+2) and d(k-1) = f(k+1). Then applying the Lemma gives

$$d(k+1) = d(k) + d(k-1)$$

= f(k+2) + f(k+1)
= f(k+3).

Hence P(k + 1) = T. CLOSE MENTAL PARENTHESIS.) We have shown that P(1) = P(2) = T and if P(n) = T for all $1 \le n \le k$ then P(k+1) = T. By (strong, I guess) induction we conclude that P(n) = T for all $n \ge 1$.

Based on a result from class, we have the following.

Corollary: For all $n \ge 1$, we have

$$d(n) = f(n+2) = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+2} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+2} \right].$$