
Math 230 D Fall 2012
Homework 5 Drew Armstrong

Problem 1. Recall that a ≡ b mod n means that n|(a− b). Use induction to prove that for
all n ≥ 2, the following holds:

“if a1, a2, . . . , an ∈ Z such that each ai ≡ 1 mod 4, then a1a2 · · · an ≡ 1 mod 4.”
[Hint: Call the statement P (n). Note that P (n) is a statement about all collections of n
inegers. Therefore, when proving P (k)⇒ P (k + 1) you must say “Assume that P (k) = T and
consider any a1, a2, . . . , ak+1 ∈ Z.” What is the base case?]

Proof. Let P (n) be the statement: “For any collection of n integers a1, a2, . . . , an ∈ Z such
that ai ≡ 1 mod 4 for all 1 ≤ i ≤ n, we have a1a2 · · · an ≡ 1 mod 4.” Note that the statement
P (2) is true, since given any a1, a2 ∈ Z with a1 = 4k1 + 1 and a2 = 4k2 + 1, we have

a1a2 = (4k1 + 1)(4k2 + 1) = 16k1k2 + 4(k1 + k2) + 1 = 4(4k1k2 + k1 + k2) + 1.

Now assume that the statement P (k) is true for some (fixed, but arbitrary) k ≥ 2. In this
case, we wish to show that P (k + 1) is also true. So consider any clollection of k + 1 integers
a1, a2, . . . , ak+1 ∈ Z such that ai ≡ 1 mod 4 for all 1 ≤ i ≤ k+1, and then consider the product
a1a2 · · · ak+1. If we let b = a1a2 · · · ak, then since P (k) is true, we know that b ≡ 1 mod 4.
But then since P (2) is true we have

a1a2 · · · ak+1 = bak+1 ≡ 1 mod 4,

as desired. By induction, we conclude that P (n) is true for all n ≥ 2. �

[I left some of the logical parentheses to the imagination. Do you know where they should be?]

Problem 2. Use induction to prove that for all integers n ≥ 2 the following statement holds:
“If p is prime and p|a1a2 · · · an for some integers a1, a2, . . . , an ≥ 2, then there exists i such
that p|ai.” [Hint: Call the statement P (n). Use Euclid’s Lemma for the induction step. You
don’t need to prove it again. In fact, there’s no new math in this problem; just setting up
notation and not getting confused.]

Proof. Let P (n) be the statement: “For any collection of n integers a1, a2, . . . , an ∈ Z and any
prime number p ∈ Z, if p divides the product a1 · · · an, then there exists some 1 ≤ i ≤ n such
that p divides ai.” Note that P (2) is exactly Euclid’s Lemma, which is true. Now assume
that the statement P (k) is true for some (fixed, but arbitrary) k ≥ 2. In this case, we wish to
show that P (k + 1) is also true. So consider any collection of k + 1 integers a1, . . . , ak+1 ∈ Z,
let p ∈ Z be any prime number, and suppose that p divides a1 · · · ak+1. If we let b = a1 · · · ak

then since p|bak+1, Euclid’s Lemma says that p|ak+1, in which case we’re done, or p|b. But
if p|b then since P (k) is true there exists some 1 ≤ i ≤ k such that p|ai. In any case, there
exists some 1 ≤ j ≤ k + 1 such that p|aj , hence P (k + 1) is true. By induction, we conclude
that P (n) is true for all n ≥ 2. �

[Again, I went for style over absolute precision. I think you’re ready for it.]

Problem 3. Use induction to prove that for all integers n ≥ 1 we have

“13 + 23 + 33 + · · ·+ n3 = (1 + 2 + · · ·+ n)2.”

This result appears in the Aryabhatiya of Aryabhata (499 CE, when he was 23 years old).
[Hint: You may assume the result 1 + 2 + · · ·+ n = n(n + 1)/2.]



Proof. Let P (n) be the statement:
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Note that the statment P (1) is true since 13 = (12 · 22)/4. Now assume that P (k) is true for
some (fixed, but arbitrary) k ≥ 1. That is, assume 13 + 23 + · · ·+ k3 = k2(k + 1)2/4. In this
case, we wish to show that P (k + 1) is also true. Indeed, we have
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hence P (k + 1) is true. By induction we conclude that P (n) is true for all n ≥ 1. �

Problem 4. Consider the following two statements/principles.

PSI: If P : N→ {T, F} is a family of statements satisfying
• P (1) = T , and
• for any k ≥ 1 we have [P (1) = P (2) = · · · = P (k) = T ]⇒ [P (k + 1) = T ].

then P (n) = T for all n ∈ N.

WO: Every nonempty subset K ⊆ N = {1, 2, 3, . . .} has a least element.

Now Prove that PSI ⇒ WO. [Hint: Assume PSI and show that the (equivalent) contrapos-
itive of WO holds; i.e., that if K ⊆ N has no least element then K = ∅. To do this you can
use PSI to show that the complement Kc is all of N. Let P (n) be the statement “ n ∈ Kc ”
and show using PSI that P (n) = T for all n ∈ N.]

Proof. We wish to show that PSI ⇒ WO. So (OPEN MENTAL PARENTHESIS. assume that
PSI holds. In this case we wish to show that WO holds. We will do this by showing the
contrapositive statement: that if K ⊆ N has no least element then K = ∅. So (OPEN
MENTAL PARENTHESIS. suppose that K ⊆ N has no least element. In this case we wish
to show that K = ∅. We will use PSI (which is true in this universe) to prove the equivalent
statement Kc = N. So let P (n) = “n ∈ Kc ”. We wish to show that P (n) = T for all
n ∈ N. First note that 1 ∈ Kc since otherwise 1 ∈ K would be the least element of K,
which contradicts our assumption that K has no least element. Next, fix an arbitrary k ∈ N
and (OPEN MENTAL PARENTHESIS. suppose that P (1) = P (2) = · · · = P (k) = T ; i.e.
suppose that 1, 2, . . . , k ∈ Kc. In this case we wish to show that P (k + 1) = T ; i.e. that
k + 1 ∈ Kc. But this is true because otherwise k + 1 ∈ K is the least element of K (since by
assumption 1, 2, . . . , k 6∈ K) which contradicts our assumption that K has no least element.
Hence P (k + 1) = T . CLOSE MENTAL PARENTHESIS.) We have shown that P (1) = T
and that P (1) = · · · = P (k) = T implies P (k + 1) = T for all k ∈ N. By the PSI we



conclude that P (n) = T for all n ∈ N. In other words, Kc = N, or K = ∅. CLOSE MENTAL
PARENTHESIS.) We conclude that WO holds. CLOSE MENTAL PARENTHESIS.) Hence
PSI ⇒ WO. �

Problem 5. Let d(n) be the number of binary strings of length n that contain no consecutive
1’s. For example, there are 5 such strings of length 3:

000, 100, 010, 001, 101.

Hence d(3) = 5. Prove that d(n) are (essentially) the Fibonacci numbers, and hence give a
closed formula for d(n). [Hint: First show that d(n) = d(n− 1) + d(n− 2) for all n ≥ 3. [Hint:
The first digit (actually, bit) of a string can be either 1 or 0.] Then use PSI.]

First we will prove a Lemma: We have d(n) = d(n− 1) + d(n− 2) for all n ≥ 3.

Proof. We wish to count the binary strings of length n with no consecutive 1’s. There are
two cases: The first bit is either 0 or 1. If the first bit is 0, then the remaining n − 1 bits
can be any string that avoids consecutive 1’s, and by definition there are d(n − 1) of these.
If the first bit is 1, then the second bit must be 0 (otherwise the first two bits are 11).
After this there are by definition d(n − 2) ways to complete the string. We conclude that
d(n) = d(n− 1) + d(n− 2). �

Now we prove the theorem.

Proof. Recall that the Fibonacci numbers are defined by f(0) = 0, f(1) = 1, and f(n) =
f(n − 1) + f(n − 2) for all n ≥ 2. We wish to show that d(n) = f(n + 2). So let P (n) =
“d(n) = f(n + 2)”. One can check that P (1) = P (2) = T (and we even know P (3) = T ,
though we don’t need it). Now fix an arbitrary k ≥ 3 and (OPEN MENTAL PARENTHESIS.
assume that P (n) = T for all 1 ≤ n ≤ k. In this case we wish to show that P (k + 1) = T ; i.e.
that d(k + 1) = f(k + 3). By assumption we have d(k) = f(k + 2) and d(k − 1) = f(k + 1).
Then applying the Lemma gives

d(k + 1) = d(k) + d(k − 1)

= f(k + 2) + f(k + 1)

= f(k + 3).

Hence P (k + 1) = T . CLOSE MENTAL PARENTHESIS.) We have shown that P (1) =
P (2) = T and if P (n) = T for all 1 ≤ n ≤ k then P (k +1) = T . By (strong, I guess) induction
we conclude that P (n) = T for all n ≥ 1. �

Based on a result from class, we have the following.

Corollary: For all n ≥ 1, we have

d(n) = f(n + 2) =
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