Problem 1. Recall that $a \equiv b \bmod n$ means that $n \mid(a-b)$. Use induction to prove that for all $n \geq 2$, the following holds:
"if $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ such that each $a_{i} \equiv 1 \bmod 4$, then $a_{1} a_{2} \cdots a_{n} \equiv 1 \bmod 4 . "$
[Hint: Call the statement $P(n)$. Note that $P(n)$ is a statement about all collections of n inegers. Therefore, when proving $P(k) \Rightarrow P(k+1)$ you must say "Assume that $P(k)=T$ and consider any $a_{1}, a_{2}, \ldots, a_{k+1} \in \mathbb{Z}$." What is the base case?]
Proof. Let $P(n)$ be the statement: "For any collection of n integers $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ such that $a_{i} \equiv 1 \bmod 4$ for all $1 \leq i \leq n$, we have $a_{1} a_{2} \cdots a_{n} \equiv 1 \bmod 4 . "$ Note that the statement $P(2)$ is true, since given any $a_{1}, a_{2} \in \mathbb{Z}$ with $a_{1}=4 k_{1}+1$ and $a_{2}=4 k_{2}+1$, we have

$$
a_{1} a_{2}=\left(4 k_{1}+1\right)\left(4 k_{2}+1\right)=16 k_{1} k_{2}+4\left(k_{1}+k_{2}\right)+1=4\left(4 k_{1} k_{2}+k_{1}+k_{2}\right)+1 .
$$

Now assume that the statement $P(k)$ is true for some (fixed, but arbitrary) $k \geq 2$. In this case, we wish to show that $P(k+1)$ is also true. So consider any clollection of $k+1$ integers $a_{1}, a_{2}, \ldots, a_{k+1} \in \mathbb{Z}$ such that $a_{i} \equiv 1 \bmod 4$ for all $1 \leq i \leq k+1$, and then consider the product $a_{1} a_{2} \cdots a_{k+1}$. If we let $b=a_{1} a_{2} \cdots a_{k}$, then since $P(k)$ is true, we know that $b \equiv 1 \bmod 4$. But then since $P(2)$ is true we have

$$
a_{1} a_{2} \cdots a_{k+1}=b a_{k+1} \equiv 1 \bmod 4
$$

as desired. By induction, we conclude that $P(n)$ is true for all $n \geq 2$.
[I left some of the logical parentheses to the imagination. Do you know where they should be?]
Problem 2. Use induction to prove that for all integers $n \geq 2$ the following statement holds: "If p is prime and $p \mid a_{1} a_{2} \cdots a_{n}$ for some integers $a_{1}, a_{2}, \ldots, a_{n} \geq 2$, then there exists i such that $p \mid a_{i}$." [Hint: Call the statement $P(n)$. Use Euclid's Lemma for the induction step. You don't need to prove it again. In fact, there's no new math in this problem; just setting up notation and not getting confused.]
Proof. Let $P(n)$ be the statement: "For any collection of n integers $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ and any prime number $p \in \mathbb{Z}$, if p divides the product $a_{1} \cdots a_{n}$, then there exists some $1 \leq i \leq n$ such that p divides a_{i}." Note that $P(2)$ is exactly Euclid's Lemma, which is true. Now assume that the statement $P(k)$ is true for some (fixed, but arbitrary) $k \geq 2$. In this case, we wish to show that $P(k+1)$ is also true. So consider any collection of $k+1$ integers $a_{1}, \ldots, a_{k+1} \in \mathbb{Z}$, let $p \in \mathbb{Z}$ be any prime number, and suppose that p divides $a_{1} \cdots a_{k+1}$. If we let $b=a_{1} \cdots a_{k}$ then since $p \mid b a_{k+1}$, Euclid's Lemma says that $p \mid a_{k+1}$, in which case we're done, or $p \mid b$. But if $p \mid b$ then since $P(k)$ is true there exists some $1 \leq i \leq k$ such that $p \mid a_{i}$. In any case, there exists some $1 \leq j \leq k+1$ such that $p \mid a_{j}$, hence $P(k+1)$ is true. By induction, we conclude that $P(n)$ is true for all $n \geq 2$.
[Again, I went for style over absolute precision. I think you're ready for it.]
Problem 3. Use induction to prove that for all integers $n \geq 1$ we have

$$
" 1^{3}+2^{3}+3^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2} . "
$$

This result appears in the Aryabhatiya of Aryabhata (499 CE, when he was 23 years old). [Hint: You may assume the result $1+2+\cdots+n=n(n+1) / 2$.]

Proof. Let $P(n)$ be the statement:

$$
" 1^{3}+2^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}=\frac{n^{2}(n+1)^{2}}{4} . "
$$

Note that the statment $P(1)$ is true since $1^{3}=\left(1^{2} \cdot 2^{2}\right) / 4$. Now assume that $P(k)$ is true for some (fixed, but arbitrary) $k \geq 1$. That is, assume $1^{3}+2^{3}+\cdots+k^{3}=k^{2}(k+1)^{2} / 4$. In this case, we wish to show that $P(k+1)$ is also true. Indeed, we have

$$
\begin{aligned}
1^{3}+2^{3}+\cdots+(k+1)^{3} & =\left(1^{3}+2^{3}+\cdots+k^{3}\right)+(k+1)^{3} \\
& =\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3} \\
& =(k+1)^{2}\left[\frac{k^{2}}{4}+(k+1)\right] \\
& =\frac{(k+1)^{2}}{4}\left[k^{2}+4 k+4\right] \\
& =\frac{(k+1)^{2}}{4}(k+2)^{2} \\
& =\frac{(k+1)^{2}((k+1)+1)^{2}}{4}
\end{aligned}
$$

hence $P(k+1)$ is true. By induction we conclude that $P(n)$ is true for all $n \geq 1$.

Problem 4. Consider the following two statements/principles.
PSI: If $P: \mathbb{N} \rightarrow\{T, F\}$ is a family of statements satisfying

- $P(1)=T$, and
- for any $k \geq 1$ we have $[P(1)=P(2)=\cdots=P(k)=T] \Rightarrow[P(k+1)=T]$.
then $P(n)=T$ for all $n \in \mathbb{N}$.
WO: Every nonempty subset $K \subseteq \mathbb{N}=\{1,2,3, \ldots\}$ has a least element.
Now Prove that PSI \Rightarrow WO. [Hint: Assume PSI and show that the (equivalent) contrapositive of WO holds; i.e., that if $K \subseteq \mathbb{N}$ has no least element then $K=\emptyset$. To do this you can use PSI to show that the complement K^{c} is all of \mathbb{N}. Let $P(n)$ be the statement " $n \in K^{c}$ " and show using PSI that $P(n)=T$ for all $n \in \mathbb{N}$.]
Proof. We wish to show that PSI \Rightarrow WO. So (OPEN MENTAL PARENTHESIS. assume that PSI holds. In this case we wish to show that WO holds. We will do this by showing the contrapositive statement: that if $K \subseteq \mathbb{N}$ has no least element then $K=\emptyset$. So (OPEN MENTAL PARENTHESIS. suppose that $K \subseteq \mathbb{N}$ has no least element. In this case we wish to show that $K=\emptyset$. We will use PSI (which is true in this universe) to prove the equivalent statement $K^{c}=\mathbb{N}$. So let $P(n)=" n \in K^{c}$ ". We wish to show that $P(n)=T$ for all $n \in \mathbb{N}$. First note that $1 \in K^{c}$ since otherwise $1 \in K$ would be the least element of K, which contradicts our assumption that K has no least element. Next, fix an arbitrary $k \in \mathbb{N}$ and (OPEN MENTAL PARENTHESIS. suppose that $P(1)=P(2)=\cdots=P(k)=T$; i.e. suppose that $1,2, \ldots, k \in K^{c}$. In this case we wish to show that $P(k+1)=T$; i.e. that $k+1 \in K^{c}$. But this is true because otherwise $k+1 \in K$ is the least element of K (since by assumption $1,2, \ldots, k \notin K)$ which contradicts our assumption that K has no least element. Hence $P(k+1)=T$. CLOSE MENTAL PARENTHESIS.) We have shown that $P(1)=T$ and that $P(1)=\cdots=P(k)=T$ implies $P(k+1)=T$ for all $k \in \mathbb{N}$. By the PSI we
conclude that $P(n)=T$ for all $n \in \mathbb{N}$. In other words, $K^{c}=\mathbb{N}$, or $K=\emptyset$. CLOSE MENTAL PARENTHESIS.) We conclude that WO holds. CLOSE MENTAL PARENTHESIS.) Hence $\mathrm{PSI} \Rightarrow \mathrm{WO}$.

Problem 5. Let $d(n)$ be the number of binary strings of length n that contain no consecutive 1 's. For example, there are 5 such strings of length 3:

$$
000, \quad 100, \quad 010, \quad 001, \quad 101 .
$$

Hence $d(3)=5$. Prove that $d(n)$ are (essentially) the Fibonacci numbers, and hence give a closed formula for $d(n)$. [Hint: First show that $d(n)=d(n-1)+d(n-2)$ for all $n \geq 3$. [Hint: The first digit (actually, bit) of a string can be either 1 or 0. .] Then use PSI.]

First we will prove a Lemma: We have $d(n)=d(n-1)+d(n-2)$ for all $n \geq 3$.
Proof. We wish to count the binary strings of length n with no consecutive 1's. There are two cases: The first bit is either 0 or 1 . If the first bit is 0 , then the remaining $n-1$ bits can be any string that avoids consecutive 1 's, and by definition there are $d(n-1)$ of these. If the first bit is 1 , then the second bit must be 0 (otherwise the first two bits are 11). After this there are by definition $d(n-2)$ ways to complete the string. We conclude that $d(n)=d(n-1)+d(n-2)$.

Now we prove the theorem.
Proof. Recall that the Fibonacci numbers are defined by $f(0)=0, f(1)=1$, and $f(n)=$ $f(n-1)+f(n-2)$ for all $n \geq 2$. We wish to show that $d(n)=f(n+2)$. So let $P(n)=$ " $d(n)=f(n+2)$ ". One can check that $P(1)=P(2)=T$ (and we even know $P(3)=T$, though we don't need it). Now fix an arbitrary $k \geq 3$ and (OPEN MENTAL PARENTHESIS. assume that $P(n)=T$ for all $1 \leq n \leq k$. In this case we wish to show that $P(k+1)=T$; i.e. that $d(k+1)=f(k+3)$. By assumption we have $d(k)=f(k+2)$ and $d(k-1)=f(k+1)$. Then applying the Lemma gives

$$
\begin{aligned}
d(k+1) & =d(k)+d(k-1) \\
& =f(k+2)+f(k+1) \\
& =f(k+3) .
\end{aligned}
$$

Hence $P(k+1)=T$. CLOSE MENTAL PARENTHESIS.) We have shown that $P(1)=$ $P(2)=T$ and if $P(n)=T$ for all $1 \leq n \leq k$ then $P(k+1)=T$. By (strong, I guess) induction we conclude that $P(n)=T$ for all $n \geq 1$.
Based on a result from class, we have the following.
Corollary: For all $n \geq 1$, we have

$$
d(n)=f(n+2)=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+2}\right] .
$$

