Problem 1. Recall that $a \equiv b \mod n$ means that n|(a - b). Use induction to prove that for all $n \geq 2$, the following holds:

"if $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ such that each $a_i \equiv 1 \mod 4$, then $a_1 a_2 \cdots a_n \equiv 1 \mod 4$." [Hint: Call the statement P(n). Note that P(n) is a statement about all collections of n inegers. Therefore, when proving $P(k) \Rightarrow P(k+1)$ you must say "Assume that P(k) = T and consider any $a_1, a_2, \ldots, a_{k+1} \in \mathbb{Z}$." What is the base case?]

Problem 2. Use induction to prove that for all integers $n \ge 2$ the following statement holds: "If p is prime and $p|a_1a_2\cdots a_n$ for some integers $a_1, a_2, \ldots, a_n \ge 2$, then there exists i such that $p|a_i$." [Hint: Call the statement P(n). Use Euclid's Lemma for the induction step. You don't need to prove it again. In fact, there's no new math in this problem; just setting up notation and not getting confused.]

Problem 3. Use induction to prove that for all integers $n \ge 1$ we have

" $1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$."

This result appears in the Aryabhatiya of Aryabhata (499 CE, when he was 23 years old). [Hint: You may assume the result $1 + 2 + \cdots + n = n(n+1)/2$.]

Problem 4. Consider the following two statements/principles.

PSI: If $P : \mathbb{N} \to \{T, F\}$ is a family of statements satisfying

• P(1) = T, and

• for any $k \ge 1$ we have $[P(1) = P(2) = \dots = P(k) = T] \Rightarrow [P(k+1) = T].$

then P(n) = T for all $n \in \mathbb{N}$.

WO: Every nonempty subset $K \subseteq \mathbb{N} = \{1, 2, 3, ...\}$ has a least element.

Now **Prove** that $\mathsf{PSI} \Rightarrow \mathsf{WO}$. [Hint: Assume PSI and show that the (equivalent) contrapositive of WO holds; i.e., that if $K \subseteq \mathbb{N}$ has **no** least element then $K = \emptyset$. To do this you can use PSI to show that the complement K^c is all of \mathbb{N} . Let P(n) be the statement " $n \in K^c$ " and show using PSI that P(n) = T for all $n \in \mathbb{N}$.]

Problem 5. Let d(n) be the number of binary strings of length n that contain no consecutive 1's. For example, there are 5 such strings of length 3:

Hence d(3) = 5. Prove that d(n) are (essentially) the Fibonacci numbers, and hence give a closed formula for d(n). [Hint: First show that d(n) = d(n-1) + d(n-2) for all $n \ge 3$. [Hint: The first digit (actually, bit) of a string can be either 1 or 0.] Then use PSI.]