Problem 1. Recall that $a \equiv b \bmod n$ means that $n \mid(a-b)$. Use induction to prove that for all $n \geq 2$, the following holds:
"if $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ such that each $a_{i} \equiv 1 \bmod 4$, then $a_{1} a_{2} \cdots a_{n} \equiv 1 \bmod 4$."
[Hint: Call the statement $P(n)$. Note that $P(n)$ is a statement about all collections of n inegers. Therefore, when proving $P(k) \Rightarrow P(k+1)$ you must say "Assume that $P(k)=T$ and consider any $a_{1}, a_{2}, \ldots, a_{k+1} \in \mathbb{Z}$." What is the base case?]

Problem 2. Use induction to prove that for all integers $n \geq 2$ the following statement holds: "If p is prime and $p \mid a_{1} a_{2} \cdots a_{n}$ for some integers $a_{1}, a_{2}, \ldots, a_{n} \geq 2$, then there exists i such that $p \mid a_{i}$." [Hint: Call the statement $P(n)$. Use Euclid's Lemma for the induction step. You don't need to prove it again. In fact, there's no new math in this problem; just setting up notation and not getting confused.]

Problem 3. Use induction to prove that for all integers $n \geq 1$ we have

$$
" 1^{3}+2^{3}+3^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2} . "
$$

This result appears in the Aryabhatiya of Aryabhata (499 CE, when he was 23 years old). [Hint: You may assume the result $1+2+\cdots+n=n(n+1) / 2$.]

Problem 4. Consider the following two statements/principles.
PSI: If $P: \mathbb{N} \rightarrow\{T, F\}$ is a family of statements satisfying

- $P(1)=T$, and
- for any $k \geq 1$ we have $[P(1)=P(2)=\cdots=P(k)=T] \Rightarrow[P(k+1)=T]$.
then $P(n)=T$ for all $n \in \mathbb{N}$.
WO: Every nonempty subset $K \subseteq \mathbb{N}=\{1,2,3, \ldots\}$ has a least element.
Now Prove that PSI \Rightarrow WO. [Hint: Assume PSI and show that the (equivalent) contrapositive of WO holds; i.e., that if $K \subseteq \mathbb{N}$ has no least element then $K=\emptyset$. To do this you can use PSI to show that the complement K^{c} is all of \mathbb{N}. Let $P(n)$ be the statement " $n \in K^{c}$ " and show using PSI that $P(n)=T$ for all $n \in \mathbb{N}$.]

Problem 5. Let $d(n)$ be the number of binary strings of length n that contain no consecutive 1 's. For example, there are 5 such strings of length 3:

$$
000, \quad 100, \quad 010, \quad 001, \quad 101 .
$$

Hence $d(3)=5$. Prove that $d(n)$ are (essentially) the Fibonacci numbers, and hence give a closed formula for $d(n)$. [Hint: First show that $d(n)=d(n-1)+d(n-2)$ for all $n \geq 3$. [Hint: The first digit (actually, bit) of a string can be either 1 or 0.] Then use PSI.]

