
Math 230 D Fall 2012
Homework 4 Drew Armstrong

Problem 1. Let a, b, c ∈ Z be integers. Prove the following.
(a) If a|b and b|c, then a|c.
(b) If a|b and a|c, then a|(bx+ cy) for any x, y ∈ Z.
(c) If a|b and b|a, then a = ±b.

Proof. To prove (a), suppose that a|b and b|c, i.e., there exist k, ` ∈ Z such that b = ak and
c = b`. Then we have c = b` = (ak)` = a(k`), hence a|c. To prove (b), suppose that a|b and
a|c, i.e., there exist k, ` ∈ Z such that b = ak and c = a`. Then for any x, y ∈ Z we have
bx+cy = (ak)x+(a`)y = a(kx+y`), hence a|(bx+cy). Finally, we prove (c). We assume that
a and b are nonzero, otherwise the whole thing is pretty silly. Now suppose that a|b and b|a,
i.e., there exist k, ` ∈ Z such that b = ak and a = b`. Then we have a = b` = (ak)` = a(k`),
hence a(1 − k`) = 0. Since a 6= 0, this implies 1 − k` = 0 or k` = 1. We conclude that
k = ` = ±1 and hence a = ±b. �

Problem 2. Given a, b ∈ Z not both zero, define the set of linear combinations

aZ + bZ := {ax+ by : x, y ∈ Z} .
What does this set look like? If d = gcd(a, b), prove that

aZ + bZ = dZ := {dk : k ∈ Z} .
This shows that “gcd(a, b) is the smallest positive linear combination of a and b.” [Hint: You
must show that aZ+ bZ ⊆ dZ and dZ ⊆ aZ+ bZ separately. One direction requires Bézout’s
Identity.]

Proof. Consider a, b ∈ Z, not both zero, and let d = gcd(a, b). First we will show that
aZ + bZ ⊆ dZ. So consider an arbitrary element ax + by ∈ aZ + bZ. Since d is a common
divisor of a and b there exist k, ` ∈ Z such that a = dk and b = d`. Then we have

ax+ by = (dk)x+ (d`)y = d(kx+ `y) ∈ dZ.
Conversely, we will show that dZ ⊆ aZ + bZ. So consider an arbitrary element dk ∈ dZ. By

Bézout’s Identity (proved by the Extended Euclidean Algorithm), there exist x, y ∈ Z such
that ax+ by = d. Then we have

dk = (ax+ by)k = a(xk) + b(yk) ∈ aZ + bZ.
�

Problem 3. Let a, b, r ∈ Z be integers and define the set

Vr := {(x, y) : ax+ by = r} .
Thus V0 is the set of solutions (x, y) to the homogeneous equation ax+ by = 0. If axr + byr = r
(i.e., if (xr, yr) is any particular solution to the equation ax+ by = r), prove that the general
solution to the equation ax+ by = r is given by

Vr = (xr, yr) + V0 := {(xr, yr) + (x0, y0) : (x0, y0) ∈ V0}
= {(xr + x0, yr + y0) : ax0 + by0 = 0} .

That is, “the general solution equals the homogeneous solution shifted by any particular
solution.” [Hint: You must show that Vr ⊆ ((xr, yr)+V0) and ((xr, yr)+V0) ⊆ Vr separately.]



Proof. Suppose that axr + byr = r. We consider (xr, yr) as fixed for the rest of the problem.
First we will show that Vr ⊆ ((xr, yr) +V0). So consider an arbitrary element (x, y) ∈ Vr,
i.e., such that ax+ by = r. Then we have

a(x− xr) + b(y − yr) = (ax+ by)− (axr + byr) = r − r = 0,

hence (x− xr, y − yr) ∈ V0. It follows that (x, y) = (xr, yr) + (x− xr, y − yr) is an element
of the set (xr, yr) + V0.

Conversely, we will show that ((xr, yr) + V0) ⊆ Vr. So consider an arbitrary element
(x, y) ∈ (xr, yr) + V0. This means we can write (x, y) = (xr, yr) + (x0, y0) = (xr + x0, yr + y0)
for some (x0, y0) ∈ V0, i.e., such that ax0 + by0 = 0. Then we have

a(xr + kx0) + b(yr + ky0) = (axr + byr) + k(ax0 + by0) = r + k0 = r,

hence (x, y) is an element of Vr. �

The next problems use the notation “a ≡ b mod n,” which means exactly that “n divides a− b.”

Problem 4 (Generalization of Euclid’s Lemma).

(a) Suppose that d|ab. If gcd(a, d) = 1, prove that d|b.
(b) Let gcd(c, n) = 1. If ac ≡ bc mod n, prove that a ≡ b mod n.

Proof. To prove (a), suppose that d|ab, say ab = dk, and gcd(a, d) = 1. By Bézout’s Identity
there exist x, y ∈ Z such that ax+ dy = 1. Multiply both sides of this equation by b to obtain

ax+ dy = 1,

(ax+ dy)b = b,

abx+ dby = b,

dkx+ dby = b,

d(kx+ by) = b.

We conclude that d|b. To prove (b), let gcd(c, n) = 1 and suppose that ac ≡ bc mod n, i.e.,
n|(ac− bc) = c(a− b). Then since n|c(a− b) and gcd(c, n) = 1, we conclude from part (a) that
a ≡ b mod n as desired. �

[Question: Given integers a, b, c ∈ Z with c 6= 0, why does ac = bc imply a = b? We certainly
can’t “divide” by c! Answer: Subtract to get ac− bc = 0, or (a− b)c = 0. Then since c 6= 0 this
implies a− b = 0, or a = b. (This itself can be proved from the axioms of order, e.g. if α > 0 and
β > 0, then αβ > 0.) So what did we just do in Problem 4(b)? We showed that ac ≡ bc and “c
is not ‘zero’ ” implies a ≡ b in some other kind of “number system.”]

Problem 5 (Generalization of Euclid’s Proof of Infinite Primes).

(a) Consider an integer n > 1. Prove that if n ≡ 3 mod 4 then n has a prime factor of the
form p ≡ 3 mod 4. [Hint: You may assume Prop 2.51 from the text. There are three
kinds of primes: the number 2, primes p ≡ 1 mod 4 and primes p ≡ 3 mod 4.]

(b) Prove that there are infinitely many prime numbers of the form p ≡ 3 mod 4. [Hint:
Suppose there are only finitely many and call them 3 < p1 < p2 < · · · < pk. Then
consider the number N = 4p1p2 · · · pk + 3. Apply part (a).]



Proof. To prove (a), let n > 1 be an integer such that n ≡ 3 mod 4. Consider its prime
factorization

n = q1q2 · · · qm.
Since n is odd (why?), the prime 2 does not appear in this factorization, so each prime factor is
either qi ≡ 1 mod 4 or qi ≡ 3 mod 4. We claim that at least one prime factor is ≡ 3 mod 4.
Suppose not, i.e., suppose that every prime factor is ≡ 1 mod 4. Then n is a product of
numbers ≡ 1 mod 4, hence n itself is ≡ 1 mod 4 (why?), contradiction.

To prove (b), suppose for contradiction that there are only finitely many primes of the
form 3 mod 4, and call them 3 < p1 < p2 < · · · < pk. (The fact that I didn’t call 3 = p1 is a
small trick. We will need it later on.) Now consider the number

N := 4p1p2 · · · pk + 3.

We have N ≡ 3 mod 4, hence by part (a) there exists a prime p ≡ 3 mod 4 such that p|N . If we
can show that this prime p is not in the set {3, p1, . . . , pk}, we will obtain a contradiction. (We
really needed part (a) because if p ≡ 1 mod 4, then p 6∈ {3, p1, . . . , pk} is not a contradiction.)
But notice that none of p1, p2, . . . , pk divides N , because if pi|N then we would have pi|(N −
4p1 · · · pk) by Problem 1(b), hence pi|3. But this contradicts the fact that 3 < pi. Finally,
we note that p 6= 3 because 3 doesn’t divide N . (If 3|N then we would also have 3|4p1 · · · pk,
and then Euclid’s Lemma implies that 3 divides some prime other than 3; contradiction.) We
conclude that

p 6∈ {3, p1, p2, . . . , pk} ,
so p is a new prime of the form 3 mod 4, contradicting the assumption that we had all of
them. �

[We have just proved tiny piece of a famous theorem called “Dirichlet’s Theorem on arithmetic
progressions,” (1837). It says that for any positive integers a, b ∈ Z with gcd(a, b) = 1, there are
infinitely many primes in the set

{a, a+ b, a+ 2b, a+ 3b, . . .} .
We proved the case of a = 3 and b = 4. If you want a bigger challenge, try to prove the case of
a = 1 and b = 4, or look it up online.]


