Problem 1. Let $a, b, c \in \mathbb{Z}$ be integers. Prove the following.
(a) If $a \mid b$ and $b \mid c$, then $a \mid c$.
(b) If $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$ for any $x, y \in \mathbb{Z}$.
(c) If $a \mid b$ and $b \mid a$, then $a= \pm b$.

Proof. To prove (a), suppose that $a \mid b$ and $b \mid c$, i.e., there exist $k, \ell \in \mathbb{Z}$ such that $b=a k$ and $c=b \ell$. Then we have $c=b \ell=(a k) \ell=a(k \ell)$, hence $a \mid c$. To prove (b), suppose that $a \mid b$ and $a \mid c$, i.e., there exist $k, \ell \in \mathbb{Z}$ such that $b=a k$ and $c=a \ell$. Then for any $x, y \in \mathbb{Z}$ we have $b x+c y=(a k) x+(a \ell) y=a(k x+y \ell)$, hence $a \mid(b x+c y)$. Finally, we prove (c). We assume that a and b are nonzero, otherwise the whole thing is pretty silly. Now suppose that $a \mid b$ and $b \mid a$, i.e., there exist $k, \ell \in \mathbb{Z}$ such that $b=a k$ and $a=b \ell$. Then we have $a=b \ell=(a k) \ell=a(k \ell)$, hence $a(1-k \ell)=0$. Since $a \neq 0$, this implies $1-k \ell=0$ or $k \ell=1$. We conclude that $k=\ell= \pm 1$ and hence $a= \pm b$.

Problem 2. Given $a, b \in \mathbb{Z}$ not both zero, define the set of linear combinations

$$
a \mathbb{Z}+b \mathbb{Z}:=\{a x+b y: x, y \in \mathbb{Z}\}
$$

What does this set look like? If $d=\operatorname{gcd}(a, b)$, prove that

$$
a \mathbb{Z}+b \mathbb{Z}=d \mathbb{Z}:=\{d k: k \in \mathbb{Z}\}
$$

This shows that " $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ is the smallest positive linear combination of a and b." [Hint: You must show that $a \mathbb{Z}+b \mathbb{Z} \subseteq d \mathbb{Z}$ and $d \mathbb{Z} \subseteq a \mathbb{Z}+b \mathbb{Z}$ separately. One direction requires Bézout's Identity.]

Proof. Consider $a, b \in \mathbb{Z}$, not both zero, and let $d=\operatorname{gcd}(a, b)$. First we will show that $a \mathbb{Z}+b \mathbb{Z} \subseteq d \mathbb{Z}$. So consider an arbitrary element $a x+b y \in a \mathbb{Z}+b \mathbb{Z}$. Since d is a common divisor of a and b there exist $k, \ell \in \mathbb{Z}$ such that $a=d k$ and $b=d \ell$. Then we have

$$
a x+b y=(d k) x+(d \ell) y=d(k x+\ell y) \in d \mathbb{Z} .
$$

Conversely, we will show that $d \mathbb{Z} \subseteq a \mathbb{Z}+b \mathbb{Z}$. So consider an arbitrary element $d k \in d \mathbb{Z}$. By Bézout's Identity (proved by the Extended Euclidean Algorithm), there exist $x, y \in \mathbb{Z}$ such that $a x+b y=d$. Then we have

$$
d k=(a x+b y) k=a(x k)+b(y k) \in a \mathbb{Z}+b \mathbb{Z} .
$$

Problem 3. Let $a, b, r \in \mathbb{Z}$ be integers and define the set

$$
V_{r}:=\{(x, y): a x+b y=r\} .
$$

Thus V_{0} is the set of solutions (x, y) to the homogeneous equation $a x+b y=0$. If $a x_{r}+b y_{r}=r$ (i.e., if $\left(x_{r}, y_{r}\right)$ is any particular solution to the equation $a x+b y=r$), prove that the general solution to the equation $a x+b y=r$ is given by

$$
\begin{aligned}
V_{r}=\left(x_{r}, y_{r}\right)+V_{0} & :=\left\{\left(x_{r}, y_{r}\right)+\left(x_{0}, y_{0}\right):\left(x_{0}, y_{0}\right) \in V_{0}\right\} \\
& =\left\{\left(x_{r}+x_{0}, y_{r}+y_{0}\right): a x_{0}+b y_{0}=0\right\} .
\end{aligned}
$$

That is, "the general solution equals the homogeneous solution shifted by any particular solution." [Hint: You must show that $V_{r} \subseteq\left(\left(x_{r}, y_{r}\right)+V_{0}\right)$ and $\left(\left(x_{r}, y_{r}\right)+V_{0}\right) \subseteq V_{r}$ separately.]

Proof. Suppose that $a x_{r}+b y_{r}=r$. We consider $\left(x_{r}, y_{r}\right)$ as fixed for the rest of the problem. First we will show that $V_{r} \subseteq\left(\left(x_{r}, y_{r}\right)+V_{0}\right)$. So consider an arbitrary element $(x, y) \in V_{r}$, i.e., such that $a x+b y=r$. Then we have

$$
a\left(x-x_{r}\right)+b\left(y-y_{r}\right)=(a x+b y)-\left(a x_{r}+b y_{r}\right)=r-r=0
$$

hence $\left(x-x_{r}, y-y_{r}\right) \in V_{0}$. It follows that $(x, y)=\left(x_{r}, y_{r}\right)+\left(x-x_{r}, y-y_{r}\right)$ is an element of the set $\left(x_{r}, y_{r}\right)+V_{0}$.

Conversely, we will show that $\left(\left(x_{r}, y_{r}\right)+V_{0}\right) \subseteq V_{r}$. So consider an arbitrary element $(x, y) \in\left(x_{r}, y_{r}\right)+V_{0}$. This means we can write $(x, y)=\left(x_{r}, y_{r}\right)+\left(x_{0}, y_{0}\right)=\left(x_{r}+x_{0}, y_{r}+y_{0}\right)$ for some $\left(x_{0}, y_{0}\right) \in V_{0}$, i.e., such that $a x_{0}+b y_{0}=0$. Then we have

$$
a\left(x_{r}+k x_{0}\right)+b\left(y_{r}+k y_{0}\right)=\left(a x_{r}+b y_{r}\right)+k\left(a x_{0}+b y_{0}\right)=r+k 0=r
$$

hence (x, y) is an element of V_{r}.

The next problems use the notation " $a \equiv b \bmod n$," which means exactly that " n divides $a-b$."

Problem 4 (Generalization of Euclid's Lemma).

(a) Suppose that $d \mid a b$. If $\operatorname{gcd}(a, d)=1$, prove that $d \mid b$.
(b) Let $\operatorname{gcd}(c, n)=1$. If $a c \equiv b c \bmod n$, prove that $a \equiv b \bmod n$.

Proof. To prove (a), suppose that $d \mid a b$, say $a b=d k$, and $\operatorname{gcd}(a, d)=1$. By Bézout's Identity there exist $x, y \in \mathbb{Z}$ such that $a x+d y=1$. Multiply both sides of this equation by b to obtain

$$
\begin{aligned}
a x+d y & =1, \\
(a x+d y) b & =b, \\
a b x+d b y & =b, \\
d k x+d b y & =b, \\
d(k x+b y) & =b .
\end{aligned}
$$

We conclude that $d \mid b$. To prove (b), let $\operatorname{gcd}(c, n)=1$ and suppose that $a c \equiv b c \bmod n$, i.e., $n \mid(a c-b c)=c(a-b)$. Then since $n \mid c(a-b)$ and $\operatorname{gcd}(c, n)=1$, we conclude from part (a) that $a \equiv b \bmod n$ as desired.
[Question: Given integers $a, b, c \in \mathbb{Z}$ with $c \neq 0$, why does $a c=b c$ imply $a=b$? We certainly can't "divide" by c ! Answer: Subtract to get $a c-b c=0$, or $(a-b) c=0$. Then since $c \neq 0$ this implies $a-b=0$, or $a=b$. (This itself can be proved from the axioms of order, e.g. if $\alpha>0$ and $\beta>0$, then $\alpha \beta>0$.) So what did we just do in Problem 4(b)? We showed that $a c \equiv b c$ and " c is not 'zero' " implies $a \equiv b$ in some other kind of "number system."]

Problem 5 (Generalization of Euclid's Proof of Infinite Primes).

(a) Consider an integer $n>1$. Prove that if $n \equiv 3 \bmod 4$ then n has a prime factor of the form $p \equiv 3 \bmod 4$. [Hint: You may assume Prop 2.51 from the text. There are three kinds of primes: the number 2 , primes $p \equiv 1 \bmod 4$ and primes $p \equiv 3 \bmod 4$.]
(b) Prove that there are infinitely many prime numbers of the form $p \equiv 3 \bmod 4$. [Hint: Suppose there are only finitely many and call them $3<p_{1}<p_{2}<\cdots<p_{k}$. Then consider the number $N=4 p_{1} p_{2} \cdots p_{k}+3$. Apply part (a).]

Proof. To prove (a), let $n>1$ be an integer such that $n \equiv 3 \bmod 4$. Consider its prime factorization

$$
n=q_{1} q_{2} \cdots q_{m} .
$$

Since n is odd (why?), the prime 2 does not appear in this factorization, so each prime factor is either $q_{i} \equiv 1 \bmod 4$ or $q_{i} \equiv 3 \bmod 4$. We claim that at least one prime factor is $\equiv 3 \bmod 4$. Suppose not, i.e., suppose that every prime factor is $\equiv 1 \bmod 4$. Then n is a product of numbers $\equiv 1 \bmod 4$, hence n itself is $\equiv 1 \bmod 4$ (why?), contradiction.

To prove (b), suppose for contradiction that there are only finitely many primes of the form $3 \bmod 4$, and call them $3<p_{1}<p_{2}<\cdots<p_{k}$. (The fact that I didn't call $3=p_{1}$ is a small trick. We will need it later on.) Now consider the number

$$
N:=4 p_{1} p_{2} \cdots p_{k}+3 .
$$

We have $N \equiv 3 \bmod 4$, hence by part (a) there exists a prime $p \equiv 3 \bmod 4$ such that $p \mid N$. If we can show that this prime p is not in the set $\left\{3, p_{1}, \ldots, p_{k}\right\}$, we will obtain a contradiction. (We really needed part (a) because if $p \equiv 1 \bmod 4$, then $p \notin\left\{3, p_{1}, \ldots, p_{k}\right\}$ is not a contradiction.) But notice that none of $p_{1}, p_{2}, \ldots, p_{k}$ divides N, because if $p_{i} \mid N$ then we would have $p_{i} \mid(N-$ $4 p_{1} \cdots p_{k}$) by Problem 1(b), hence $p_{i} \mid 3$. But this contradicts the fact that $3<p_{i}$. Finally, we note that $p \neq 3$ because 3 doesn't divide N. (If $3 \mid N$ then we would also have $3 \mid 4 p_{1} \cdots p_{k}$, and then Euclid's Lemma implies that 3 divides some prime other than 3; contradiction.) We conclude that

$$
p \notin\left\{3, p_{1}, p_{2}, \ldots, p_{k}\right\}
$$

so p is a new prime of the form $3 \bmod 4$, contradicting the assumption that we had all of them.
[We have just proved tiny piece of a famous theorem called "Dirichlet's Theorem on arithmetic progressions," (1837). It says that for any positive integers $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$, there are infinitely many primes in the set

$$
\{a, a+b, a+2 b, a+3 b, \ldots\} .
$$

We proved the case of $a=3$ and $b=4$. If you want a bigger challenge, try to prove the case of $a=1$ and $b=4$, or look it up online.]

