Math 230 D Fall 2012
Homework 4 Drew Armstrong

Problem 1. Let a, b, c € Z be integers. Prove the following.
(a) If a|b and b|c, then alc.
(b) If alb and ale, then a|(bx + cy) for any z,y € Z.
(¢) If a|b and b|a, then a = +b.

Proof. To prove (a), suppose that a|b and blc, i.e., there exist k, ¢ € Z such that b = ak and
¢ = bl. Then we have ¢ = bl = (ak)l = a(kl), hence alc. To prove (b), suppose that a|b and
ale, i.e., there exist k,¢ € Z such that b = ak and ¢ = af. Then for any z,y € 7Z we have
bx+cy = (ak)x+ (al)y = a(kx+yl), hence a|(bx+cy). Finally, we prove (c). We assume that
a and b are nonzero, otherwise the whole thing is pretty silly. Now suppose that a|b and b|a,
i.e., there exist k,¢ € Z such that b = ak and a = bf. Then we have a = bl = (ak)l = a(k?),
hence a(l — kf) = 0. Since a # 0, this implies 1 — k¢ = 0 or k¢ = 1. We conclude that
k ={¢ = £1 and hence a = £b. O

Problem 2. Given a,b € Z not both zero, define the set of linear combinations
aZ + b7 = {ax + by :x,y € Z}.

What does this set look like? If d = ged(a,b), prove that
aZ +bZ =dZ = {dk : k € Z} .

This shows that “gcd(a,b) is the smallest positive linear combination of a and b.” [Hint: You
must show that aZ +bZ C dZ and dZ C aZ+ bZ separately. One direction requires Bézout’s
Identity.]

Proof. Consider a,b € Z, not both zero, and let d = ged(a,b). First we will show that
aZ, + b7 C dZ. So consider an arbitrary element ax + by € aZ + bZ. Since d is a common
divisor of a and b there exist k, ¢ € Z such that a = dk and b = d¢. Then we have

ax + by = (dk)x + (dl)y = d(kx + ty) € dZ.

Conversely, we will show that dZ C aZ + bZ. So consider an arbitrary element dk € dZ. By
Bézout’s Identity (proved by the Extended Euclidean Algorithm), there exist xz,y € Z such
that ax + by = d. Then we have

dk = (az + by)k = a(zk) + b(yk) € aZ + bZ.

Problem 3. Let a,b,r € Z be integers and define the set
Vi i={(x,y) :ax + by =r}.

Thus V} is the set of solutions (z,y) to the homogeneous equation ax +by = 0. If az, + by, = r
(i.e., if (z,,y,) is any particular solution to the equation ax + by = r), prove that the general
solution to the equation ax + by = r is given by

Ve = (@r,yr) + Vo := {(2r,ur) + (0, 90) : (z0,90) € Vo}
= {(@r + z0,yr + yo) : axo + byo = 0} .

That is, “the general solution equals the homogeneous solution shifted by any particular
solution.” [Hint: You must show that V, C ((z,,y,)+Vp) and ((z,, y,)+Vp) C V, separately.]



Proof. Suppose that az, + by, = r. We consider (z,,y,) as fixed for the rest of the problem.
First we will show that V,. C ((z,,y,) + Vo). So consider an arbitrary element (z,y) € V,,
i.e., such that ax + by = r. Then we have

a(z —zy) + b(y — yr) = (az + by) — (azr +byy) =7 —1r =0,

hence (x — x,,y — yr) € Vp. It follows that (z,vy) = (zr,y,) + (z — z,,y — y,) is an element
of the set (x,,y,) + Vb.

Conversely, we will show that ((z,,y,) + Vo) C V,.. So consider an arbitrary element
(z,y) € (xr,yr) + Vo. This means we can write (x,y) = (2, yr) + (20, y0) = (zr + Z0, Yr + Y0)
for some (zg,yo) € Vo, i.e., such that azg + byp = 0. Then we have

a(z, + kxo) + by, + kyo) = (az, + by,) + k(axg + byo) = r + k0 = r,

hence (z,y) is an element of V. O

The next problems use the notation “a = b mod n,” which means exactly that “n divides a — b

Problem 4 (Generalization of Euclid’s Lemma).

(a) Suppose that d|ab. If ged(a,d) = 1, prove that d|b.
(b) Let ged(e,n) = 1. If ac = bc mod n, prove that a = b mod n.

Proof. To prove (a), suppose that d|ab, say ab = dk, and ged(a,d) = 1. By Bézout’s Identity
there exist x,y € Z such that ax + dy = 1. Multiply both sides of this equation by b to obtain

ar +dy =1,
(ax + dy)b=b,
abr 4+ dby = b,
dkx + dby = b,
d(kx + by) = b.

We conclude that d|b. To prove (b), let ged(c,n) = 1 and suppose that ac = be mod n, i.e.,
n|(ac—bc) = c(a—0b). Then since n|c(a —b) and ged(e,n) = 1, we conclude from part (a) that
a = bmod n as desired. (]

[Question: Given integers a,b,c € Z with ¢ # 0, why does ac = bc imply a = b? We certainly
can't “divide” by ¢! Answer: Subtract to get ac — bc = 0, or (a — b)c = 0. Then since ¢ # 0 this
implies a —b = 0, or a = b. (This itself can be proved from the axioms of order, e.g. if & > 0 and
B > 0, then o > 0.) So what did we just do in Problem 4(b)? We showed that ac = bc and “c
is not ‘zero’ " implies a = b in some other kind of “number system.”]

Problem 5 (Generalization of Euclid’s Proof of Infinite Primes).

(a) Consider an integer n > 1. Prove that if n = 3 mod 4 then n has a prime factor of the
form p = 3 mod 4. [Hint: You may assume Prop 2.51 from the text. There are three
kinds of primes: the number 2, primes p = 1 mod 4 and primes p = 3 mod 4.]

(b) Prove that there are infinitely many prime numbers of the form p = 3 mod 4. [Hint:
Suppose there are only finitely many and call them 3 < p; < p2 < --+ < pr. Then
consider the number N = 4pps - - pr + 3. Apply part (a).]



Proof. To prove (a), let n > 1 be an integer such that n = 3 mod 4. Consider its prime
factorization
n=4q1492 " qm-

Since n is odd (why?), the prime 2 does not appear in this factorization, so each prime factor is
either ¢; = 1 mod 4 or ¢; = 3 mod 4. We claim that at least one prime factor is = 3 mod 4.
Suppose not, i.e., suppose that every prime factor is = 1 mod 4. Then n is a product of
numbers = 1 mod 4, hence n itself is = 1 mod 4 (why?), contradiction.

To prove (b), suppose for contradiction that there are only finitely many primes of the
form 3 mod 4, and call them 3 < p; < pa < --+ < pg. (The fact that I didn’t call 3 =p; is a
small trick. We will need it later on.) Now consider the number

N :=dpips---pr + 3.

We have N = 3 mod 4, hence by part (a) there exists a prime p = 3 mod 4 such that p|N. If we
can show that this prime p is not in the set {3, p1,...,px}, we will obtain a contradiction. (We
really needed part (a) because if p = 1 mod 4, then p & {3, p1,...,px} is not a contradiction.)
But notice that none of p1,pa, ..., pr divides N, because if p;| N then we would have p;|(N —
4py - - - p) by Problem 1(b), hence p;|3. But this contradicts the fact that 3 < p;. Finally,
we note that p # 3 because 3 doesn’t divide N. (If 3|V then we would also have 3|4p; - - - px,
and then Euclid’s Lemma implies that 3 divides some prime other than 3; contradiction.) We
conclude that
p & {3,p1,p2, -, Dk},

so p is a new prime of the form 3 mod 4, contradicting the assumption that we had all of
them. O

[We have just proved tiny piece of a famous theorem called “Dirichlet's Theorem on arithmetic
progressions,” (1837). It says that for any positive integers a,b € Z with ged(a,b) = 1, there are
infinitely many primes in the set

{a,a +b,a+2ba+3b,...}.

We proved the case of @ = 3 and b = 4. If you want a bigger challenge, try to prove the case of
a=1and b =4, or look it up online.]



