Problem 1. Let $a, b, c \in \mathbb{Z}$ be integers. Prove the following.
(a) If $a \mid b$ and $b \mid c$, then $a \mid c$.
(b) If $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$ for any $x, y \in \mathbb{Z}$.
(c) If $a \mid b$ and $b \mid a$, then $a= \pm b$.

Problem 2. Given $a, b \in \mathbb{Z}$ not both zero, define the set of linear combinations

$$
a \mathbb{Z}+b \mathbb{Z}:=\{a x+b y: x, y \in \mathbb{Z}\} .
$$

What does this set look like? If $d=\operatorname{gcd}(a, b)$, prove that

$$
a \mathbb{Z}+b \mathbb{Z}=d \mathbb{Z}:=\{d k: k \in \mathbb{Z}\}
$$

This shows that " $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ is the smallest positive linear combination of a and b." [Hint: You must show that $a \mathbb{Z}+b \mathbb{Z} \subseteq d \mathbb{Z}$ and $d \mathbb{Z} \subseteq a \mathbb{Z}+b \mathbb{Z}$ separately. One direction requires Bézout's Identity.]

Problem 3. Let $a, b, r \in \mathbb{Z}$ be integers and define the set

$$
V_{r}:=\{(x, y): a x+b y=r\} .
$$

Thus V_{0} is the set of solutions (x, y) to the homogeneous equation $a x+b y=0$. If $a x_{r}+b y_{r}=r$ (i.e. if (x_{r}, y_{r}) is any particular solution to the equation $a x+b y=r$), prove that the general solution to the equation $a x+b y=r$ is given by

$$
\begin{aligned}
V_{r}=\left(x_{r}, y_{r}\right)+V_{0} & :=\left\{\left(x_{r}, y_{r}\right)+\left(x_{0}, y_{0}\right):\left(x_{0}, y_{0}\right) \in V_{0}\right\} \\
& =\left\{\left(x_{r}+x_{0}, y_{r}+y_{0}\right): a x_{0}+b y_{0}=0\right\} .
\end{aligned}
$$

That is, "the general solution equals the homogeneous solution shifted by any particular solution." [Hint: You must show that $V_{r} \subseteq\left(\left(x_{r}, y_{r}\right)+V_{0}\right)$ and $\left(\left(x_{r}, y_{r}\right)+V_{0}\right) \subseteq V_{r}$ separately.]

The next problems use the notation " $a \equiv b \bmod n$," which means exactly that " n divides $a-b$."
Problem 4 (Generalization of Euclid's Lemma).
(a) Suppose that $d \mid a b$. If $\operatorname{gcd}(a, d)=1$, prove that $d \mid b$.
(b) Let $\operatorname{gcd}(c, n)=1$. If $a c \equiv b c \bmod n$, prove that $a \equiv b \bmod n$.

Problem 5 (Generalization of Euclid's Proof of Infinite Primes).
(a) Consider an integer $n>1$. Prove that if $n \equiv 3 \bmod 4$ then n has a prime factor of the form $p \equiv 3 \bmod 4$. [Hint: You may assume Prop 2.51 from the text. There are three kinds of primes: the number 2 , primes $p \equiv 1 \bmod 4$ and primes $p \equiv 3 \bmod 4$.]
(b) Prove that there are infinitely many prime numbers of the form $p \equiv 3 \bmod 4$. [Hint: Suppose there are only finitely many and call them $3<p_{1}<p_{2}<\cdots<p_{k}$. Then consider the number $N=4 p_{1} p_{2} \cdots p_{k}+3$. Apply part (a).]

