Problem 1. Let $a, b, c \in \mathbb{Z}$ be integers. Prove the following.

- (a) If a|b and b|c, then a|c.
- (b) If a|b and a|c, then a|(bx + cy) for any $x, y \in \mathbb{Z}$.
- (c) If a|b and b|a, then $a = \pm b$.

Problem 2. Given $a, b \in \mathbb{Z}$ not both zero, define the set of linear combinations

$$a\mathbb{Z} + b\mathbb{Z} := \{ax + by : x, y \in \mathbb{Z}\}.$$

What does this set look like? If d = gcd(a, b), prove that

$$a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z} := \{dk : k \in \mathbb{Z}\}$$

This shows that "gcd(a, b) is the smallest positive linear combination of a and b." [Hint: You must show that $a\mathbb{Z} + b\mathbb{Z} \subseteq d\mathbb{Z}$ and $d\mathbb{Z} \subseteq a\mathbb{Z} + b\mathbb{Z}$ separately. One direction requires Bézout's Identity.]

Problem 3. Let $a, b, r \in \mathbb{Z}$ be integers and define the set

$$V_r := \{(x, y) : ax + by = r\}.$$

Thus V_0 is the set of solutions (x, y) to the homogeneous equation ax + by = 0. If $ax_r + by_r = r$ (i.e. if (x_r, y_r) is any particular solution to the equation ax + by = r), prove that the general solution to the equation ax + by = r is given by

$$V_r = (x_r, y_r) + V_0 := \{ (x_r, y_r) + (x_0, y_0) : (x_0, y_0) \in V_0 \}$$

= \{ (x_r + x_0, y_r + y_0) : ax_0 + by_0 = 0 \}.

That is, "the general solution equals the homogeneous solution shifted by any particular solution." [Hint: You must show that $V_r \subseteq ((x_r, y_r) + V_0)$ and $((x_r, y_r) + V_0) \subseteq V_r$ separately.]

The next problems use the notation " $a \equiv b \mod n$," which means exactly that "n divides a - b."

Problem 4 (Generalization of Euclid's Lemma).

- (a) Suppose that d|ab. If gcd(a, d) = 1, prove that d|b.
- (b) Let gcd(c, n) = 1. If $ac \equiv bc \mod n$, prove that $a \equiv b \mod n$.

Problem 5 (Generalization of Euclid's Proof of Infinite Primes).

- (a) Consider an integer n > 1. **Prove** that if $n \equiv 3 \mod 4$ then n has a prime factor of the form $p \equiv 3 \mod 4$. [Hint: You may assume Prop 2.51 from the text. There are three kinds of primes: the number 2, primes $p \equiv 1 \mod 4$ and primes $p \equiv 3 \mod 4$.]
- (b) Prove that there are infinitely many prime numbers of the form $p \equiv 3 \mod 4$. [Hint: Suppose there are only **finitely** many and call them $3 < p_1 < p_2 < \cdots < p_k$. Then consider the number $N = 4p_1p_2\cdots p_k + 3$. Apply part (a).]