
Math 230 D Fall 2012
Homework 3 Drew Armstrong

Problem 1. Let X and Y be finite sets.
(a) If there exists a surjective function f : X → Y , prove that |X| ≥ |Y |.
(b) If there exists an injective function g : X → Y , prove that |X| ≤ |Y |.
(c) If there exists a bijective function h : X → Y , prove that |X| = |Y |.

[Hint: For parts (a) and (b), for each y ∈ Y let d(y) be the number of elements of X that
point to y ∈ Y . What happens if you sum these numbers over all the elements of Y ?]

Proof. Let X, Y be finite sets and consider a function f : X → Y . Let d(y) denote the number
of elements of x that point to y ∈ Y (i.e. the number of x ∈ X such that f(x) = y). If we sum
the numbers d(y) we will get the total number of arrows in the function. Since (by definition)
every element of X has exactly one arrow, this implies

|X| =
∑
y∈Y

d(y).

Note that the function f : X → Y is surjective if and only if we have d(y) ≥ 1 for all y ∈ Y .
In this case we have

|X| =
∑
y∈Y

d(y) ≥
∑
y∈Y

1 = |Y |.

The function is injective if and only if d(y) ≤ 1 for all y ∈ Y , in which case we have

|X| =
∑
y∈Y

d(y) ≤
∑
y∈Y

1 = |Y |.

Finally, the function f : X → Y is bijective if and only if d(y) = 1 for all y ∈ Y , in which case
we have

|X| =
∑
y∈Y

d(y) =
∑
y∈Y

1 = |Y |.

�

Problem 2. Use Fermat’s method of “infinite descent” to prove that if d ≥ 0 is a non-square
integer, then

√
d is not a fraction. [Hint: Suppose that

√
d = a/b for some integers a, b ∈ Z

with b ≥ 1. Divide a by b to obtain a = qb + r with 0 ≤ r < b. Show that
a

b
=

db− qa

a− qb
=

db− qa

r
.

Thus we have found a new rational expression for
√

d with a strictly smaller denominator.
What happens if you repeat this argument?]

Based on your experience with
√

2,
√

3 and
√

5, you may be tempted to give the following proof,
but it is wrong.

Wrong Proof. Suppose for contradiction that
√

d is a fraction. Then we can write
√

d = a/b in
lowest terms (i.e. with a, b ∈ Z coprime). (We probably need the Well-Ordering Principle to
do that.) Squaring both sides and multiplying by b2 gives db2 = a2, hence d|a2. Since d|a2 we
have d|a (maybe you would prove this in a Lemma), say a = dk. But then db2 = a2 = d2k2,
hence b2 = dk2. We conclude that d|b2 and hence d|b, which contradicts the fact that a and b
are coprime. �



[The reason this is wrong is because d|a2 does not imply d|a in general. For example 12|62 but
126 | 6. The result is still true, but we need a better proof. So we follow the hint.]

Proof. Let d ≥ 0 be a non-square integer and suppose for contradiction that
√

d = a/b for
some integers a, b ∈ Z. We can assume that b ≥ 1 by absorbing any negative sign into the
denominator. Then since b > 0 we can apply the Division Algorithm to get a = qb + r with
0 ≤ r < b. In fact we have 1 ≤ r < b since otherwise

√
d = a/b is an integer. Now we have

a2 = db2

a2 − qab = db2 − qab

a(a− qb) = b(db− qa)
a

b
=

db− qa

a− qb
.

Thus
√

d = (db− qa)/r with 1 ≤ r < b. If we let a1 = db− qa and b1 = r, then we can repeat
this argument to obtain

√
d =

a

b
=

a1

b1
=

a2

b2
=

a3

b3
· · · ,

where b > b1 > b2 > b3 > · · · ≥ 1. After a finite number of steps we must have bn = 1, which
implies that

√
d = an/bn = an is an integer. Contradiction. �

[This problem was tricky, so let me give one more slightly different proof.]

Slightly Different Proof. Let d ≥ 0 be a non-square integer and suppose for contradiction that√
d = a/b for some integers a, b ∈ Z. We may assume that b > 1 because

√
d is not an integer.

Now apply the Division Algorithm to get a = qb + r and 0 ≤ r < b. As before we have
√

d =
a

b
=

db− qa

a− qb
.

If we let a1 := db−qa and b1 := a−qb, then we can repeat the argument indefinitely to obtain
an infinite sequence

√
d =

a

b
=

a1

b1
=

a2

b2
=

a3

b3
· · · ,

where the infinite sequence of denominators b > b1 > b2 > b3 > · · · > 1 is strictly decreasing
but greater than 1 (since

√
d is not an integer). This contradicts the Well-Ordering Principle

because any set of integers > 1 must have a smallest member, but the set of denominators
{b, b1, b2, b3, . . .} doesn’t. �

Problem 3. The Division Algorithm 2.12 says that for all a, b ∈ Z with b > 0 there exist
unique q, r ∈ Z such that a = qb + r and 0 ≤ r < b. Explicitly use this to prove the following:
For all a, b ∈ Z with b > 0 there exists a unique integer k ∈ Z such that

k ≤ a

b
< k + 1.

[Note: You must prove both the existence and the uniqueness of k. Don’t be a hero; use the
Division Algorithm. You do not need to reduce everything to the axioms, especially since I did not
give you axioms for fractions!]



Proof. Since b > 0, the Division Algorithm says that there exist q, r ∈ Z with a = qb + r and
0 ≤ r < b. Hence we have

0 ≤ a− qb < b,

0 ≤ a

b
− q < 1,

q ≤ a

b
< q + 1,

and we can take k = q. To show uniqueness, suppose we have k1 ≤ a/b < k1 + 1 and
k2 ≤ a/b < k2 + 1 with 0 ≤ k1 < b and 0 ≤ k2 < b. We wish to show that k1 = k2. By
reversing the steps above, we have

k1 ≤
a

b
< k1 + 1,

0 ≤ a

b
− k1 < 1,

0 ≤ a− k1b < b,

and similarly 0 ≤ a−k2b < b. If we set r1 := a−k1b and r2 := a−k2b then we have a = k1b+r1

and a = k2b + r2 with 0 ≤ r1 < b and 0 ≤ r2 < b. Then the uniqueness part of the Division
Algorithm implies k1 = k2, as desired. �

Problem 4. How do − and × interact? For the following exercises I want you to give
Euclidean style proofs using the axioms of Z from the handout. That is, don’t assume anything
and justify every tiny little step.

(a) Prove that for all a ∈ Z we have 0a = 0.
(b) Recall that −n is the unique integer such that n+(−n) = 0. Prove that for all a, b ∈ Z

we have (−a)b = −(ab). [Hint: You will need part (a).]
(c) Prove that for all a, b, c ∈ Z we have a(b− c) = ab− ac. [Hint: Use part (b).]
(d) Prove that for all a, b ∈ Z we have (−a)(−b) = ab. [Hint: Show that ab + a(−b) = 0

and then use part (b). Note that −(−n) = n for all n ∈ Z.]

First I’ll isolate a useful lemma.

Cancellation Lemma: Given a, b, c ∈ Z with a + c = b + c we have a = b.

Proof. Suppose that a + c = b + c. By (A4) there exists some d ∈ Z such that c + d = 0. Then
we have

a + c = b + c,

(a + c) + d = (b + c) + d,

a + (c + d) = b + (c + d), (A2)

a + 0 = b + 0, (A4)

a = b. (A3)

�

Now I’ll prove (a) through (d).



Proof. I will apply the commutative axioms (A1) and (M1) when needed, without comment.
To prove (a) first note that 0 = 0 + 0 by axiom (A3). Then we have

0 = 0 + 0,

0a = (0 + 0)a,

0a = 0a + 0a, (D)

0 + 0a = 0a + 0a. (A3)

Then we apply the Cancellation Lemma to conclude that 0 = 0a. To prove (b), recall that
−(ab) is the unique integer x such that ab+x = 0. Thus we need to show that ab+(−a)b = 0.
Indeed, we have

ab + (−a)b = (a + (−a))b, (D)

= 0b, (A3)

= 0. by part (a)

To prove (c) note that

a(b− c) = a(b + (−c)),

= ab + a(−c), (D)

= ab + (−(ac)), by part (b)
= ab− ac.

Finally, to prove (d) first note that ab + a(−b) = a(b + (−b)) = a0 = 0 by (D) and part (a).
This means that ab is the additive inverse of a(−b), i.e. ab = −(a(−b)). Then apply part (b)
to conclude that ab = −(a(−b)) = (−a)(−b). �

[You were probably not as careful as I was in setting up the Cancellation Lemma. In particular,
you might not have invoked the associative axiom (A2), even though it is strictly necessary. The
grader will be forgiving about this. He will just look for clarity and the right spirit, whatever that
means.]


