Problem 1. Let X and Y be finite sets.
(a) If there exists a surjective function $f: X \rightarrow Y$, prove that $|X| \geq|Y|$.
(b) If there exists an injective function $g: X \rightarrow Y$, prove that $|X| \leq|Y|$.
(c) If there exists a bijective function $h: X \rightarrow Y$, prove that $|X|=|Y|$.
[Hint: For parts (a) and (b), for each $y \in Y$ let $d(y)$ be the number of elements of X that point to $y \in Y$. What happens if you sum these numbers over all the elements of Y ?]

Problem 2. Use Fermat's method of "infinite descent" to prove that if $d \geq 0$ is a non-square integer, then \sqrt{d} is not a fraction. [Hint: Suppose that $\sqrt{d}=a / b$ for some integers $a, b \in \mathbb{Z}$ with $b \geq 1$. Divide a by b to obtain $a=q b+r$ with $0 \leq r<b$. Show that

$$
\frac{a}{b}=\frac{d b-q a}{a-q b}=\frac{d b-q a}{r} .
$$

Thus we have found a new rational expression for \sqrt{d} with a strictly smaller denominator. What happens if you repeat this argument?]

Problem 3. The Division Algorithm 2.12 says that for all $a, b \in \mathbb{Z}$ with $b>0$ there exist unique $q, r \in \mathbb{Z}$ such that $a=q b+r$ and $0 \leq r<b$. Explicitly use this to prove the following: For all $a, b \in \mathbb{Z}$ with $b>0$ there exists a unique integer $k \in \mathbb{Z}$ such that

$$
k \leq \frac{a}{b}<k+1
$$

[Note: You must prove both the existence and the uniqueness of k. Don't be a hero; use the Division Algorithm. You do not need to reduce everything to the axioms, especially since I did not give you axioms for fractions!]

Problem 4. How do - and \times interact? For the following exercises I want you to give Euclidean style proofs using the axioms of \mathbb{Z} from the handout. That is, don't assume anything and justify every tiny little step.
(a) Prove that for all $a \in \mathbb{Z}$ we have $0 a=0$.
(b) Recall that $-n$ is the unique integer such that $n+(-n)=0$. Prove that for all $a, b \in \mathbb{Z}$ we have $(-a) b=-(a b)$. [Hint: You will need part (a).]
(c) Prove that for all $a, b, c \in \mathbb{Z}$ we have $a(b-c)=a b-a c$. [Hint: Use part (b).]
(d) Prove that for all $a, b \in \mathbb{Z}$ we have $(-a)(-b)=a b$. [Hint: Show that $a b+a(-b)=0$ and then use part (b). Note that $-(-n)=n$ for all $n \in \mathbb{Z}$.]

