Problem 1.

- (a) Prove that the product of two odd numbers is odd.
- (b) Prove that 3^n is odd for all integers $n \ge 1$. [It's easy to prove that, say, 3^{101} is odd. But how will you prove it for infinitely many different n without having to say infinitely many things? I'll warn you: There is a big issue here called **induction**.]
- (c) Assume for the moment that there exists a number x such that $2^x = 3$ and call it $x = \log_2(3)$. Prove that $\log_2(3)$ is not a fraction.

Proof of (a). Let m and n be two odd integers, say m = 2k + 1 and $n = 2\ell + 1$. It follows that the product $mn = (2k+1)(2\ell+1) = 4k\ell + 2k + 2\ell + 1 = 2(2k\ell + k + \ell) + 1$ is odd. \Box

[There is an issue lurking in Problem 1(b). I'll give two solutions. The first solution is acceptable for now, but is not really correct. The second solution is correct, but I don't expect that you would come up with this by yourself. (We will discuss the issue of "induction" in due time.)]

Proof of (b). Solution 1. In part (a) we showed that the product of two odd integers is odd. Since 3 is odd we conclude that $3^2 = 3 \cdot 3$ odd. Then since 3^2 is odd we conclude that $3^3 = 3^2 \cdot 3$ is odd. Continuing in this way we conclude that 3^n is odd for all integers $n \ge 1$. [The issue with this solution is the words "continuing in this way"; what does that even mean?] Solution 2. Suppose for contradiction that there exists some integer $m \ge 1$ such that 3^m is even, and suppose that m is the smallest integer with this property. Since 3^1 is certainly odd we know that m > 1 and hence 3^{m-1} is odd. Finally, by part (a) we conclude that $3^m = 3 \cdot 3^{m-1}$ is odd. This contradiction means that there does not exist an integer $m \ge 1$ such that 3^m is even.

[For the next proof, it's okay if you assume that 0 < x. I kind of thought you would.]

Proof of (c). Suppose for contradiction that $x = \log_2(3) = m/n$ for some integers m and n. Since x > 0 — why is this? — we can assume that $m \ge 1$ and $n \ge 1$. By definition this means that $2^{m/n} = 3$, and raising both sides of this equation to the power n gives $2^m = 3^n$. But $2^m = 2(2^{m-1})$ is even and we proved in part (b) that 3^n is odd. Contradiction.

[But if you don't want to assume 0 < x, then I appreciate your skepticism. In this case, the proof might go as follows.]

More Rigorous Proof of (c). Suppose for contradiction that $x = \log_2(3) = m/n$ for some integers m and n. Without loss of generality, we can assume that n > 0 and absorb any negative sign into the numerator. Now there are three cases. **Case 1:** If m = 0 then we have $2^0 = 3$, which is false. **Case 2:** If $m \ge 1$ then we have $2^{m/n} = 3$, and raising both sides to the power n gives $2^m = 3^n$. But $2^m = 2(2^{m-1})$ is even and by part (a) we know that 3^n is odd. Contradiction. **Case 3:** If $m \le -1$, let $m' = -m \ge 1$. Then raising both sides of $2^{m/n} = 3$ to the power n gives $2^m = 3^n$, which is the same as $1/2^{m'} = 3^n$. Then we multiply both sides by $2^{m'}$ to get $1 = 3^n 2^{m'}$ with $n \ge 1$ and $m' \ge 1$. This is a contradiction because $3^n \ge 3$ and $2^{m'} \ge 2$. (Why is that true? Stay tuned.)

In any case, we have a contradiction.

[Note: It is not possible for us to give a completely rigorous proof right now, because I have not told you the axioms of the integers. In fact, even after I tell you the axioms, we won't want to reduce every proof to the axioms. I think the second proof of (c) above is already too rigorous.]

Problem 2. Prove that there is no perfect square of the form 4k + 3. That is, prove that there do not exist integers n and k such that $n^2 = 4k + 3$.

Proof. Let *n* be an integer. Using division with remainder we can write *n* as 4k + 0, 4k + 1, 4k + 2 or 4k + 3 for some integer *k*. We will compute n^2 in each case. **Case 0:** $n^2 = (4k + 0)^2 = 16k^2 = 4(4k^2) + 0$. **Case 1:** $n^2 = (4k + 1)^2 = 16k^2 + 8k + 1 = 4(4k^2 + 2k) + 1$. **Case 2:** $n^2 = (4k + 2)^2 = 16k^2 + 16k + 4 = 4(4k^2 + 4k + 1) + 0$. **Case 3:** $n^2 = (4k + 3)^2 = 16k^2 + 24k + 9 = 4(4k^2 + 6k + 2) + 1$. In any case we observe that the remainder of n^2 when divided by 4 is **not** equal to 3. □

[If you don't like that, here's a more elegant proof suggested by a student.]

More elegant proof. Suppose for contradiction that there exist integers n and k such that $n^2 = 4k+3$. Since $n^2 = 4k+3 = 2(2k+1)+1$ is odd, it follows that n must be odd. (Certainly, if n even then so is n^2 . Now take the contrapositive.) Thus we can write $n = 2\ell + 1$ for some integer ℓ . Finally we have

$$n^{2} = 4k + 3$$
$$(2\ell + 1)^{2} = 4k + 3$$
$$4\ell^{2} + 4\ell + 1 = 4k + 3$$
$$4(\ell^{2} + \ell - k) = 2$$
$$2(\ell^{2} + \ell - k) = 1,$$

which is a contradiction.

Problem 3. Let P, Q and R be logical statements.

- (a) Use a truth table to prove that the statement $P \Rightarrow (Q \text{ OR } R)$ is logically equivalent to the statement $(P \text{ AND NOT } Q) \Rightarrow R$.
- (b) Use a truth table to prove that the statement $(P \text{ OR } Q) \Rightarrow R$ is logically equivalent to the statement $(P \Rightarrow R)$ AND $(Q \Rightarrow R)$.

Proof of (a). (What can I say?) Observe that the following truth table is correct, and that the fifth and eighth columns are equal.

P	Q	R	Q OR R	$P \Rightarrow (Q \text{ OR } R)$	NOT Q	${\cal P}$ AND NOT ${\cal Q}$	$(P \text{ AND NOT } Q) \Rightarrow R$
T	T	T	T	T	F	F	T
T	T	F	T	T	F	F	T
T	F	T	T	T	T	T	T
T	F	F	F	F	T	T	F
F	T	T	T	T	F	F	T
F	T	F	T	T	F	F	T
F	F	T	T	T	T	F	T
F	F	F	F	T	T	F	T

Proof of (b). Observe that the following truth table is correct, and that the fifth and eighth columns are equal.

P	Q	R	P OR Q	$(P \text{ OR } Q) \Rightarrow R$	$P \Rightarrow R$	$Q \Rightarrow R$	$(P \Rightarrow R)$ AND $(Q \Rightarrow R)$
T	T	T	T	Т	T	T	T
T	T	F	T	F	F	F	F
T	F	T	T	T	T	T	T
T	F	F	T	F	F	T	F
F	T	T	T	T	T	T	T
F	T	F	T	F	T	F	F
F	F	T	F	T	T	T	T
F	F	F	F	T	T	T	T

Problem 4. Let m and n be integers. Prove that

"(*m* is even OR *n* is even) \Leftrightarrow *mn* is even".

Explicitly state any logical principles that you use. [Hint: You will need Problem 3.]

Proof. Consider the statements P = "m is even", Q = "n is even" and R = "mn is even". We wish to prove that $(P \text{ OR } Q) \Rightarrow R$.

First we will show that $(P \text{ OR } Q) \Rightarrow R$, which by Problem 3(b) is equivalent to $(P \Rightarrow$ R) AND $(Q \Rightarrow R)$. To show $P \Rightarrow R$, suppose that m is even, say m = 2k. Then mn = 2kn = 2kn2(kn) is even as desired. Similarly, to show that $Q \Rightarrow R$, suppose that n is even, say $n = 2\ell$. Then $mn = m2\ell = 2(m\ell)$ is even.

Next we will show that $R \Rightarrow (P \text{ OR } Q)$, which by Problem (a) is equivalent to $(R \text{ AND NOT } P) \Rightarrow$ Q. So suppose that R AND NOT P, i.e. that mn is even and m is odd. It follows that n is even since otherwise by Problem 1(a) we would have mn odd, which is a contradiction.

Problem 5. Draw a line of slope α through the point (-1, 0) on the unit circle.

- (a) Prove that the other point of intersection is (^{1-α²}/_{1+α²}, ^{2α}/_{1+α²}).
 (b) Prove that α is a fraction if and only if ^{1-α²}/_{1+α²} and ^{2α}/_{1+α²} are **both** fractions.

Proof of (a). We follow Descartes by writing down the equation of the line $(y = \alpha(x + 1))$ and the equation of the circle $(x^2 + y^2 = 1)$. Then the points of intersection are the values of $(x, y) \in \mathbb{R}^2$ that satisfy both equations simultaneously. First we square the equation of the line to get $y^2 = \alpha^2 (x+1)^2 = \alpha^2 x^2 + 2\alpha^2 x + \alpha^2$. Then we substitute this into the equation of the circle to get

$$x^{2} + y^{2} = 1$$
$$x^{2} + (\alpha^{2}x^{2} + 2\alpha^{2}x + \alpha^{2} + 1) = 1$$
$$(1 + \alpha^{2})x^{2} + 2\alpha^{2}x + (\alpha^{2} - 1) = 0.$$

Next we apply the "quadratic formula" to get

$$\begin{aligned} x &= \frac{1}{2(1+\alpha^2)} [-2\alpha^2 \pm \sqrt{4\alpha^4 - 4(1+\alpha^2)(\alpha^2 - 1)}] \\ &= \frac{1}{2(1+\alpha^2)} [-2\alpha^2 \pm \sqrt{4\alpha^4 - 4(\alpha^4 - 1)}] \\ &= \frac{1}{2(1+\alpha^2)} [-2\alpha^2 \pm \sqrt{4}] \\ &= \frac{1}{2(1+\alpha^2)} [-2\alpha^2 \pm 2] \\ &= \frac{1-\alpha^2}{1+\alpha^2} \quad \text{or} \quad -1. \end{aligned}$$

Finally, we substitute these values of x back into the equation $y = \alpha(x+1)$ to get the solutions (x,y) = (-1,0) and $\left(\frac{1-\alpha^2}{1+\alpha^2}, \frac{2\alpha}{1+\alpha^2}\right)$.

Proof of (b). First suppose that α is a fraction. That is, suppose that $\alpha = a/b$ for some integers a and b, with $b \neq 0$. Then by multiplying the numerator and denominator by b^2 we get

$$\frac{1-\alpha^2}{1+\alpha^2} = \frac{1-a^2/b^2}{1+a^2/b^2} = \frac{b^2-a^2}{b^2+a^2}$$

and

$$\frac{2\alpha}{+\alpha^2} = \frac{2a/b}{1+a^2/b^2} = \frac{2ab}{b^2+a^2},$$

1

which are both fractions of integers. Conversely, suppose that $X := \frac{1-\alpha^2}{1+\alpha^2} = \frac{a}{b}$ and $Y := \frac{2\alpha}{1+\alpha^2} = \frac{c}{d}$ for some integers a, b, c, d with $b \neq 0$ and $d \neq 0$. Then from the equation of the line $(y = \alpha(x + 1))$ we get

$$\alpha = \frac{Y}{X+1} = \frac{c/d}{(a+b)/b} = \frac{bc}{d(a+b)},$$
rs.

which is a fraction of integers.

[Note: This gives us a **bijection** between the "rational points" on the circle (except for (-1,0)) and the set of all "rational numbers". For any rational number $\alpha = a/b$ we get a rational point $\left(\frac{b^2-a^2}{b^2+a^2},\frac{2ab}{b^2+a^2}\right)$ on the unit circle, and every rational point on the unit circle has this form. Of what possible use could this be?]