Problem 1.

(a) Prove that the product of two odd numbers is odd.
(b) Prove that 3^{n} is odd for all integers $n \geq 1$. [It's easy to prove that, say, 3^{101} is odd. But how will you prove it for infinitely many different n without having to say infinitely many things? I'll warn you: There is a big issue here called induction.]
(c) Assume for the moment that there exists a number x such that $2^{x}=3$ and call it $x=\log _{2}(3)$. Prove that $\log _{2}(3)$ is not a fraction.
Proof of (a). Let m and n be two odd integers, say $m=2 k+1$ and $n=2 \ell+1$. It follows that the product $m n=(2 k+1)(2 \ell+1)=4 k \ell+2 k+2 \ell+1=2(2 k \ell+k+\ell)+1$ is odd.
[There is an issue lurking in Problem 1(b). I'll give two solutions. The first solution is acceptable for now, but is not really correct. The second solution is correct, but I don't expect that you would come up with this by yourself. (We will discuss the issue of "induction" in due time.)]

Proof of (b). Solution 1. In part (a) we showed that the product of two odd integers is odd. Since 3 is odd we conclude that $3^{2}=3 \cdot 3$ odd. Then since 3^{2} is odd we conclude that $3^{3}=3^{2} \cdot 3$ is odd. Continuing in this way we conclude that 3^{n} is odd for all integers $n \geq 1$. [The issue with this solution is the words "continuing in this way"; what does that even mean?] Solution 2. Suppose for contradiction that there exists some integer $m \geq 1$ such that 3^{m} is even, and suppose that m is the smallest integer with this property. Since 3^{1} is certainly odd we know that $m>1$ and hence 3^{m-1} is odd. Finally, by part (a) we conclude that $3^{m}=3 \cdot 3^{m-1}$ is odd. This contradiction means that there does not exist an integer $m \geq 1$ such that 3^{m} is even.
[For the next proof, it's okay if you assume that $0<x$. I kind of thought you would.]
Proof of (c). Suppose for contradiction that $x=\log _{2}(3)=m / n$ for some integers m and n. Since $x>0$ - why is this? - we can assume that $m \geq 1$ and $n \geq 1$. By definition this means that $2^{m / n}=3$, and raising both sides of this equation to the power n gives $2^{m}=3^{n}$. But $2^{m}=2\left(2^{m-1}\right)$ is even and we proved in part (b) that 3^{n} is odd. Contradiction.
[But if you don't want to assume $0<x$, then I appreciate your skepticism. In this case, the proof might go as follows.]
More Rigorous Proof of (c). Suppose for contradiction that $x=\log _{2}(3)=m / n$ for some integers m and n. Without loss of generality, we can assume that $n>0$ and absorb any negative sign into the numerator. Now there are three cases. Case 1: If $m=0$ then we have $2^{0}=3$, which is false. Case 2: If $m \geq 1$ then we have $2^{m / n}=3$, and raising both sides to the power n gives $2^{m}=3^{n}$. But $2^{m}=2\left(2^{m-1}\right)$ is even and by part (a) we know that 3^{n} is odd. Contradiction. Case 3: If $m \leq-1$, let $m^{\prime}=-m \geq 1$. Then raising both sides of $2^{m / n}=3$ to the power n gives $2^{m}=3^{n}$, which is the same as $1 / 2^{m^{\prime}}=3^{n}$. Then we multiply both sides by $2^{m^{\prime}}$ to get $1=3^{n} 2^{m^{\prime}}$ with $n \geq 1$ and $m^{\prime} \geq 1$. This is a contradiction because $3^{n} \geq 3$ and $2^{m^{\prime}} \geq 2$. (Why is that true? Stay tuned.)

In any case, we have a contradiction.
[Note: It is not possible for us to give a completely rigorous proof right now, because I have not told you the axioms of the integers. In fact, even after I tell you the axioms, we won't want to reduce every proof to the axioms. I think the second proof of (c) above is already too rigorous.]

Problem 2. Prove that there is no perfect square of the form $4 k+3$. That is, prove that there do not exist integers n and k such that $n^{2}=4 k+3$.

Proof. Let n be an integer. Using division with remainder we can write n as $4 k+0,4 k+1$, $4 k+2$ or $4 k+3$ for some integer k. We will compute n^{2} in each case. Case 0 : $n^{2}=$ $(4 k+0)^{2}=16 k^{2}=4\left(4 k^{2}\right)+0$. Case 1: $n^{2}=(4 k+1)^{2}=16 k^{2}+8 k+1=4\left(4 k^{2}+2 k\right)+1$. Case 2: $n^{2}=(4 k+2)^{2}=16 k^{2}+16 k+4=4\left(4 k^{2}+4 k+1\right)+0$. Case 3: $n^{2}=(4 k+3)^{2}=$ $16 k^{2}+24 k+9=4\left(4 k^{2}+6 k+2\right)+1$. In any case we observe that the remainder of n^{2} when divided by 4 is not equal to 3 .
[If you don't like that, here's a more elegant proof suggested by a student.]
More elegant proof. Suppose for contradiction that there exist integers n and k such that $n^{2}=4 k+3$. Since $n^{2}=4 k+3=2(2 k+1)+1$ is odd, it follows that n must be odd. (Certainly, if n even then so is n^{2}. Now take the contrapositive.) Thus we can write $n=2 \ell+1$ for some integer ℓ. Finally we have

$$
\begin{aligned}
n^{2} & =4 k+3 \\
(2 \ell+1)^{2} & =4 k+3 \\
4 \ell^{2}+4 \ell+1 & =4 k+3 \\
4\left(\ell^{2}+\ell-k\right) & =2 \\
2\left(\ell^{2}+\ell-k\right) & =1
\end{aligned}
$$

which is a contradiction.

Problem 3. Let P, Q and R be logical statements.
(a) Use a truth table to prove that the statement $P \Rightarrow(Q$ OR $R)$ is logically equivalent to the statement (P AND NOT Q) $\Rightarrow R$.
(b) Use a truth table to prove that the statement $(P$ OR $Q) \Rightarrow R$ is logically equivalent to the statement $(P \Rightarrow R)$ AND $(Q \Rightarrow R)$.

Proof of (a). (What can I say?) Observe that the following truth table is correct, and that the fifth and eighth columns are equal.

P	Q	R	Q OR R	$P \Rightarrow(Q$ OR $R)$	NOT Q	P AND NOT Q	$(P$ AND NOT $Q) \Rightarrow R$
T	T	T	T	T	F	F	T
T	T	F	T	T	F	F	T
T	F	T	T	T	T	T	T
T	F	F	F	F	T	T	F
F	T	T	T	T	F	F	T
F	T	F	T	T	F	F	T
F	F	T	T	T	T	F	T
F	F	F	F	T	T	F	T

Proof of (b). Observe that the following truth table is correct, and that the fifth and eighth columns are equal.

P	Q	R	P	OR Q	$(P$ OR $Q) \Rightarrow R$	$P \Rightarrow R$	$Q \Rightarrow R$	$(P \Rightarrow R)$ AND $(Q \Rightarrow R)$
T								
T	T	F	T	F	F	F	F	
T	F	T	T	T	T	T	T	
T	F	F	T	F	F	T	F	
F	T							
F	T	F	T	F	T	F	F	
F	F	T	F	T	T	T	T	
F	F	F	F	T	T	T	T	

Problem 4. Let m and n be integers. Prove that

$$
\text { " }(m \text { is even OR } n \text { is even }) \Leftrightarrow m n \text { is even". }
$$

Explicitly state any logical principles that you use. [Hint: You will need Problem 3.]
Proof. Consider the statements $P=" m$ is even", $Q=" n$ is even" and $R=" m n$ is even". We wish to prove that $(P$ OR $Q) \Rightarrow R$.

First we will show that (P OR Q) $\Rightarrow R$, which by Problem 3(b) is equivalent to ($P \Rightarrow$ $R)$ AND $(Q \Rightarrow R)$. To show $P \Rightarrow R$, suppose that m is even, say $m=2 k$. Then $m n=2 k n=$ $2(k n)$ is even as desired. Similarly, to show that $Q \Rightarrow R$, suppose that n is even, say $n=2 \ell$. Then $m n=m 2 \ell=2(m \ell)$ is even.

Next we will show that $R \Rightarrow(P$ OR $Q)$, which by Problem (a) is equivalent to (R AND NOT $P) \Rightarrow$ Q. So suppose that R AND NOT P, i.e. that $m n$ is even and m is odd. It follows that n is even since otherwise by Problem 1(a) we would have $m n$ odd, which is a contradiction.

Problem 5. Draw a line of slope α through the point $(-1,0)$ on the unit circle.

(a) Prove that the other point of intersection is $\left(\frac{1-\alpha^{2}}{1+\alpha^{2}}, \frac{2 \alpha}{1+\alpha^{2}}\right)$.
(b) Prove that α is a fraction if and only if $\frac{1-\alpha^{2}}{1+\alpha^{2}}$ and $\frac{2 \alpha}{1+\alpha^{2}}$ are both fractions.

Proof of (a). We follow Descartes by writing down the equation of the line ($y=\alpha(x+1)$) and the equation of the circle $\left(x^{2}+y^{2}=1\right)$. Then the points of intersection are the values of $(x, y) \in \mathbb{R}^{2}$ that satisfy both equations simultaneously. First we square the equation of the
line to get $y^{2}=\alpha^{2}(x+1)^{2}=\alpha^{2} x^{2}+2 \alpha^{2} x+\alpha^{2}$. Then we substitute this into the equation of the circle to get

$$
\begin{array}{r}
x^{2}+y^{2}=1 \\
x^{2}+\left(\alpha^{2} x^{2}+2 \alpha^{2} x+\alpha^{2}+1\right)=1 \\
\left(1+\alpha^{2}\right) x^{2}+2 \alpha^{2} x+\left(\alpha^{2}-1\right)=0 .
\end{array}
$$

Next we apply the "quadratic formula" to get

$$
\begin{aligned}
x & =\frac{1}{2\left(1+\alpha^{2}\right)}\left[-2 \alpha^{2} \pm \sqrt{4 \alpha^{4}-4\left(1+\alpha^{2}\right)\left(\alpha^{2}-1\right)}\right] \\
& =\frac{1}{2\left(1+\alpha^{2}\right)}\left[-2 \alpha^{2} \pm \sqrt{4 \alpha^{4}-4\left(\alpha^{4}-1\right)}\right] \\
& =\frac{1}{2\left(1+\alpha^{2}\right)}\left[-2 \alpha^{2} \pm \sqrt{4}\right] \\
& =\frac{1}{2\left(1+\alpha^{2}\right)}\left[-2 \alpha^{2} \pm 2\right] \\
& =\frac{1-\alpha^{2}}{1+\alpha^{2}} \quad \text { or } \quad-1 .
\end{aligned}
$$

Finally, we substitute these values of x back into the equation $y=\alpha(x+1)$ to get the solutions $(x, y)=(-1,0)$ and $\left(\frac{1-\alpha^{2}}{1+\alpha^{2}}, \frac{2 \alpha}{1+\alpha^{2}}\right)$.

Proof of (b). First suppose that α is a fraction. That is, suppose that $\alpha=a / b$ for some integers a and b, with $b \neq 0$. Then by multiplying the numerator and denominator by b^{2} we get

$$
\frac{1-\alpha^{2}}{1+\alpha^{2}}=\frac{1-a^{2} / b^{2}}{1+a^{2} / b^{2}}=\frac{b^{2}-a^{2}}{b^{2}+a^{2}}
$$

and

$$
\frac{2 \alpha}{1+\alpha^{2}}=\frac{2 a / b}{1+a^{2} / b^{2}}=\frac{2 a b}{b^{2}+a^{2}},
$$

which are both fractions of integers.
Conversely, suppose that $X:=\frac{1-\alpha^{2}}{1+\alpha^{2}}=\frac{a}{b}$ and $Y:=\frac{2 \alpha}{1+\alpha^{2}}=\frac{c}{d}$ for some integers a, b, c, d with $b \neq 0$ and $d \neq 0$. Then from the equation of the line $(y=\alpha(x+1))$ we get

$$
\alpha=\frac{Y}{X+1}=\frac{c / d}{(a+b) / b}=\frac{b c}{d(a+b)},
$$

which is a fraction of integers.
[Note: This gives us a bijection between the "rational points" on the circle (except for $(-1,0)$) and the set of all "rational numbers". For any rational number $\alpha=a / b$ we get a rational point $\left(\frac{b^{2}-a^{2}}{b^{2}+a^{2}}, \frac{2 a b}{b^{2}+a^{2}}\right)$ on the unit circle, and every rational point on the unit circle has this form. Of what possible use could this be?]

