
Math 230 D Fall 2012
Homework 2 Drew Armstrong

Problem 1.
(a) Prove that the product of two odd numbers is odd.
(b) Prove that 3n is odd for all integers n ≥ 1. [It’s easy to prove that, say, 3101 is odd. But

how will you prove it for infinitely many different n without having to say infinitely
many things? I’ll warn you: There is a big issue here called induction.]

(c) Assume for the moment that there exists a number x such that 2x = 3 and call it
x = log2(3). Prove that log2(3) is not a fraction.

Proof of (a). Let m and n be two odd integers, say m = 2k+ 1 and n = 2`+ 1. It follows that
the product mn = (2k + 1)(2`+ 1) = 4k`+ 2k + 2`+ 1 = 2(2k`+ k + `) + 1 is odd. �

[There is an issue lurking in Problem 1(b). I’ll give two solutions. The first solution is acceptable
for now, but is not really correct. The second solution is correct, but I don’t expect that you would
come up with this by yourself. (We will discuss the issue of “induction” in due time.)]

Proof of (b). Solution 1. In part (a) we showed that the product of two odd integers is odd.
Since 3 is odd we conclude that 32 = 3 ·3 odd. Then since 32 is odd we conclude that 33 = 32 ·3
is odd. Continuing in this way we conclude that 3n is odd for all integers n ≥ 1. [The issue
with this solution is the words “continuing in this way”; what does that even mean?] Solution
2. Suppose for contradiction that there exists some integer m ≥ 1 such that 3m is even, and
suppose that m is the smallest integer with this property. Since 31 is certainly odd we know
that m > 1 and hence 3m−1 is odd. Finally, by part (a) we conclude that 3m = 3 · 3m−1 is
odd. This contradiction means that there does not exist an integer m ≥ 1 such that 3m is
even. �

[For the next proof, it’s okay if you assume that 0 < x. I kind of thought you would.]

Proof of (c). Suppose for contradiction that x = log2(3) = m/n for some integers m and n.
Since x > 0 — why is this? — we can assume that m ≥ 1 and n ≥ 1. By definition this
means that 2m/n = 3, and raising both sides of this equation to the power n gives 2m = 3n.
But 2m = 2(2m−1) is even and we proved in part (b) that 3n is odd. Contradiction. �

[But if you don’t want to assume 0 < x, then I appreciate your skepticism. In this case, the proof
might go as follows.]

More Rigorous Proof of (c). Suppose for contradiction that x = log2(3) = m/n for some
integers m and n. Without loss of generality, we can assume that n > 0 and absorb any
negative sign into the numerator. Now there are three cases. Case 1: If m = 0 then we have
20 = 3, which is false. Case 2: If m ≥ 1 then we have 2m/n = 3, and raising both sides to the
power n gives 2m = 3n. But 2m = 2(2m−1) is even and by part (a) we know that 3n is odd.
Contradiction. Case 3: If m ≤ −1, let m′ = −m ≥ 1. Then raising both sides of 2m/n = 3
to the power n gives 2m = 3n, which is the same as 1/2m

′
= 3n. Then we multiply both sides

by 2m
′

to get 1 = 3n2m
′

with n ≥ 1 and m′ ≥ 1. This is a contradiction because 3n ≥ 3 and
2m

′ ≥ 2. (Why is that true? Stay tuned.)
In any case, we have a contradiction. �

[Note: It is not possible for us to give a completely rigorous proof right now, because I have not
told you the axioms of the integers. In fact, even after I tell you the axioms, we won’t want to
reduce every proof to the axioms. I think the second proof of (c) above is already too rigorous.]



Problem 2. Prove that there is no perfect square of the form 4k + 3. That is, prove that
there do not exist integers n and k such that n2 = 4k + 3.

Proof. Let n be an integer. Using division with remainder we can write n as 4k + 0, 4k + 1,
4k + 2 or 4k + 3 for some integer k. We will compute n2 in each case. Case 0: n2 =
(4k + 0)2 = 16k2 = 4(4k2) + 0. Case 1: n2 = (4k + 1)2 = 16k2 + 8k + 1 = 4(4k2 + 2k) + 1.
Case 2: n2 = (4k + 2)2 = 16k2 + 16k + 4 = 4(4k2 + 4k + 1) + 0. Case 3: n2 = (4k + 3)2 =
16k2 + 24k + 9 = 4(4k2 + 6k + 2) + 1. In any case we observe that the remainder of n2 when
divided by 4 is not equal to 3. �

[If you don’t like that, here’s a more elegant proof suggested by a student.]

More elegant proof. Suppose for contradiction that there exist integers n and k such that
n2 = 4k+3. Since n2 = 4k+3 = 2(2k+1)+1 is odd, it follows that n must be odd. (Certainly,
if n even then so is n2. Now take the contrapositive.) Thus we can write n = 2`+ 1 for some
integer `. Finally we have

n2 = 4k + 3

(2`+ 1)2 = 4k + 3

4`2 + 4`+ 1 = 4k + 3

4(`2 + `− k) = 2

2(`2 + `− k) = 1,

which is a contradiction. �

Problem 3. Let P , Q and R be logical statements.

(a) Use a truth table to prove that the statement P ⇒ (Q OR R) is logically equivalent
to the statement (P AND NOT Q)⇒ R.

(b) Use a truth table to prove that the statement (P OR Q) ⇒ R is logically equivalent
to the statement (P ⇒ R) AND (Q⇒ R).

Proof of (a). (What can I say?) Observe that the following truth table is correct, and that
the fifth and eighth columns are equal.

P Q R Q OR R P ⇒ (Q OR R) NOT Q P AND NOT Q (P AND NOT Q)⇒ R
T T T T T F F T
T T F T T F F T
T F T T T T T T
T F F F F T T F
F T T T T F F T
F T F T T F F T
F F T T T T F T
F F F F T T F T

�

Proof of (b). Observe that the following truth table is correct, and that the fifth and eighth
columns are equal.



P Q R P OR Q (P OR Q)⇒ R P ⇒ R Q⇒ R (P ⇒ R) AND (Q⇒ R)
T T T T T T T T
T T F T F F F F
T F T T T T T T
T F F T F F T F
F T T T T T T T
F T F T F T F F
F F T F T T T T
F F F F T T T T

�

Problem 4. Let m and n be integers. Prove that
“(m is even OR n is even) ⇔ mn is even”.

Explicitly state any logical principles that you use. [Hint: You will need Problem 3.]

Proof. Consider the statements P =“m is even”, Q =“n is even” and R =“mn is even”. We
wish to prove that (P OR Q)⇒ R.

First we will show that (P OR Q) ⇒ R, which by Problem 3(b) is equivalent to (P ⇒
R) AND (Q⇒ R). To show P ⇒ R, suppose that m is even, say m = 2k. Then mn = 2kn =
2(kn) is even as desired. Similarly, to show that Q⇒ R, suppose that n is even, say n = 2`.
Then mn = m2` = 2(m`) is even.

Next we will show thatR⇒ (P OR Q), which by Problem (a) is equivalent to (R AND NOT P )⇒
Q. So suppose that R AND NOT P , i.e. that mn is even and m is odd. It follows that n is
even since otherwise by Problem 1(a) we would have mn odd, which is a contradiction. �

Problem 5. Draw a line of slope α through the point (−1, 0) on the unit circle.

(a) Prove that the other point of intersection is
(

1−α2

1+α2 ,
2α

1+α2

)
.

(b) Prove that α is a fraction if and only if 1−α2

1+α2 and 2α
1+α2 are both fractions.

Proof of (a). We follow Descartes by writing down the equation of the line (y = α(x + 1))
and the equation of the circle (x2 + y2 = 1). Then the points of intersection are the values
of (x, y) ∈ R2 that satisfy both equations simultaneously. First we square the equation of the



line to get y2 = α2(x+ 1)2 = α2x2 + 2α2x+ α2. Then we substitute this into the equation of
the circle to get

x2 + y2 = 1

x2 + (α2x2 + 2α2x+ α2 + 1) = 1

(1 + α2)x2 + 2α2x+ (α2 − 1) = 0.

Next we apply the “quadratic formula” to get

x =
1

2(1 + α2)
[−2α2 ±

√
4α4 − 4(1 + α2)(α2 − 1)]

=
1

2(1 + α2)
[−2α2 ±

√
4α4 − 4(α4 − 1)]

=
1

2(1 + α2)
[−2α2 ±

√
4]

=
1

2(1 + α2)
[−2α2 ± 2]

=
1− α2

1 + α2
or − 1.

Finally, we substitute these values of x back into the equation y = α(x+1) to get the solutions
(x, y) = (−1, 0) and

(
1−α2

1+α2 ,
2α

1+α2

)
. �

Proof of (b). First suppose that α is a fraction. That is, suppose that α = a/b for some
integers a and b, with b 6= 0. Then by multiplying the numerator and denominator by b2 we
get

1− α2

1 + α2
=

1− a2/b2

1 + a2/b2
=
b2 − a2

b2 + a2

and
2α

1 + α2
=

2a/b
1 + a2/b2

=
2ab

b2 + a2
,

which are both fractions of integers.
Conversely, suppose that X := 1−α2

1+α2 = a
b and Y := 2α

1+α2 = c
d for some integers a, b, c, d with

b 6= 0 and d 6= 0. Then from the equation of the line (y = α(x+ 1)) we get

α =
Y

X + 1
=

c/d

(a+ b)/b
=

bc

d(a+ b)
,

which is a fraction of integers. �

[Note: This gives us a bijection between the “rational points” on the circle (except for (−1, 0))
and the set of all “rational numbers”. For any rational number α = a/b we get a rational point(
b2−a2

b2+a2 ,
2ab
b2+a2

)
on the unit circle, and every rational point on the unit circle has this form. Of

what possible use could this be?]


