There are 4 problems, worth 5 points each. This is a closed book test. Anyone caught cheating will receive a score of zero.

Problem 1.

(a) Accurately state the Principle of Strong Induction.

Let $P(n)$ be a logical statement depending on an integer n. If

- $P(b)=T$, and
- For all integers $k \geq b$ we have

$$
(P(b) \wedge P(b+1) \wedge \cdots \wedge P(k)) \Rightarrow P(k+1)
$$

then it follows that $P(n)=T$ for all $n \geq b$.

Now let $\mathrm{WO}=$ Well Ordering Principle, $\mathrm{PI}=$ Principle of Induction and $\mathrm{PSI}=$ Principle of Strong Induction. Evaluate the following statements as True or False.
(b) $\mathrm{WO} \Rightarrow \mathrm{PI}$

Recall that WO, PI, and PSI are all logically equivalent. Hence $\mathrm{WO} \Rightarrow \mathrm{PI}$ is true.
(c) NOT WO \Rightarrow NOT PSI

This is logically equivalent to $\mathrm{PSI} \Rightarrow \mathrm{WO}$, which is true.
Problem 2. Prove that for all integers $n \geq 1$ the number $n^{3}+2 n$ is divisible by 3 .
(a) Define a logical statement $P(n)$.

$$
P(n):=" 3 \mid\left(n^{3}+2 n\right) "
$$

(b) Verify that $P(1)$ is true.

Note that $P(1)=" 3 \mid 3 "$, which is clearly true.
(c) Let $k \geq 1$ and assume that $P(k)$ is true. In this case, prove that $P(k+1)$ is also true. We assume that $3 \mid\left(k^{3}+2 k\right)$, which means that $k^{3}+2 k=3 \ell$ for some $\ell \in \mathbb{Z}$. Then we have

$$
\begin{aligned}
(k+1)^{3}+2(k+1) & =k^{3}+3 k^{2}+3 k+1+2 k+1 \\
& =\left(k^{3}+2 k\right)+3 k^{2}+3 k+3 \\
& =3 \ell+3\left(k^{2}+k+1\right) \\
& =3\left(\ell+k^{2}+k+1\right)
\end{aligned}
$$

hence $P(k+1)$ is true.

Problem 3.

(a) Accurately state Pascal's Recurrence for binomial coefficients $\binom{n}{k}$.

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

(b) Prove Pascal's Recurrence using the formula $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.

Using the formula gives

$$
\begin{aligned}
\binom{n-1}{k-1}+\binom{n-1}{k} & =\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-k-1)!} \\
& =\frac{k}{k} \cdot \frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-k-1)!} \cdot \frac{(n-k)}{(n-k)} \\
& =\frac{k(n-1)!}{k!(n-k)!}+\frac{(n-k)(n-1)!}{k!(n-k)!} \\
& =\frac{k(n-1)!+(n-k)(n-1)!}{k!(n-k)!} \\
& =\frac{[k+(n-k)](n-1)!}{k!(n-k)!} \\
& =\frac{n(n-1)!}{k!(n-k)!} \\
& =\frac{n!}{k!(n-k)!} \\
& =\binom{n}{k}
\end{aligned}
$$

Problem 4. We say that a group of horses is monochromatic if each horse in the group has the same color. Consider the following statement:

$$
P(n)=\text { "Every group of } n \text { horses is monochromatic." }
$$

(a) Let $k \geq 2$ and assume that $P(k)$ is true. In this case, prove that $P(k+1)$ is also true.

Proof. We have assumed that every group of k horses is monochromatic. Now consider any group of $k+1$ horses, say $h_{1}, h_{2}, \ldots, h_{k}, h_{k+1}$. By assumption the group

$$
\begin{equation*}
h_{1}, h_{2}, \ldots, h_{k} \tag{1}
\end{equation*}
$$

is monochromatic, as well as the group

$$
\begin{equation*}
h_{2}, \ldots, h_{k}, h_{k+1} \tag{2}
\end{equation*}
$$

It remains only to check that h_{1} and h_{k+1} have the same color. Since $k+1 \geq 3$ there exists some horse h_{i} with $1<i<k+1$. By (1) we know that h_{1} and h_{i} have the same color and by (2) we know that h_{i} and h_{k+1} have the same color. By transitivity we conclude that h_{1} and h_{k+1} have the same color. We conclude that the group is monochromatic.
(b) This does not imply that $P(n)$ is true for all $n \geq 2$. Why not? [Hint: There exist white horses. There exist black horses.] Answer: Because $P(2)$ is false.

