There are 4 problems, worth 5 points each. This is a closed book test. Anyone caught cheating will receive a score of **zero**.

Problem 1.

(a) Accurately state the Principle of Strong Induction.

Let P(n) be a logical statement depending on an integer n. If

- P(b) = T, and
- For all integers $k \ge b$ we have

$$(P(b) \land P(b+1) \land \dots \land P(k)) \Rightarrow P(k+1),$$

then it follows that P(n) = T for all $n \ge b$.

Now let WO=Well Ordering Principle, PI=Principle of Induction and PSI=Principle of Strong Induction. Evaluate the following statements as **True** or **False**.

(b)
$$WO \Rightarrow PI$$

Recall that WO, PI, and PSI are all logically equivalent. Hence $WO \Rightarrow PI$ is true.

(c) NOT $WO \Rightarrow NOT PSI$

This is logically equivalent to $PSI \Rightarrow WO$, which is true.

Problem 2. Prove that for all integers $n \ge 1$ the number $n^3 + 2n$ is divisible by 3. (a) Define a logical statement P(n).

$$P(n) := "3|(n^3 + 2n)"$$

(b) Verify that P(1) is true.

Note that P(1) = "3|3", which is clearly true.

(c) Let $k \ge 1$ and assume that P(k) is true. In this case, prove that P(k+1) is also true.

We assume that $3|(k^3+2k)$, which means that $k^3+2k=3\ell$ for some $\ell \in \mathbb{Z}$. Then we have $(k+1)^3+2(k+1)=k^3+3k^2+3k+1+2k+1$

$$= (k^{3} + 2k) + 3k^{2} + 3k + 3$$
$$= 3\ell + 3(k^{2} + k + 1)$$
$$= 3(\ell + k^{2} + k + 1),$$

hence P(k+1) is true.

Problem 3.

(a) Accurately state Pascal's Recurrence for binomial coefficients $\binom{n}{k}$.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

(b) Prove Pascal's Recurrence using the formula $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Using the formula gives

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-k-1)!}$$

$$= \frac{k}{k} \cdot \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-k-1)!} \cdot \frac{(n-k)}{(n-k)!}$$

$$= \frac{k(n-1)!}{k!(n-k)!} + \frac{(n-k)(n-1)!}{k!(n-k)!}$$

$$= \frac{k(n-1)! + (n-k)(n-1)!}{k!(n-k)!}$$

$$= \frac{[k+(n-k)](n-1)!}{k!(n-k)!}$$

$$= \frac{n(n-1)!}{k!(n-k)!}$$

$$= \frac{n!}{k!(n-k)!}$$

$$= \binom{n}{k}.$$

Problem 4. We say that a group of horses is *monochromatic* if each horse in the group has the same color. Consider the following statement:

P(n) = "**Every** group of *n* horses is monochromatic."

(a) Let $k \ge 2$ and assume that P(k) is true. In this case, prove that P(k+1) is also true.

Proof. We have assumed that every group of k horses is monochromatic. Now consider any group of k + 1 horses, say $h_1, h_2, \ldots, h_k, h_{k+1}$. By assumption the group

(1)
$$h_1, h_2, \ldots, h_k$$

is monochromatic, as well as the group

$$(2) h_2, \dots, h_k, h_{k+1}.$$

It remains only to check that h_1 and h_{k+1} have the same color. Since $k+1 \ge 3$ there exists some horse h_i with 1 < i < k+1. By (1) we know that h_1 and h_i have the same color and by (2) we know that h_i and h_{k+1} have the same color. By transitivity we conclude that h_1 and h_{k+1} have the same color. We conclude that the group is monochromatic. \Box

(b) This does **not** imply that P(n) is true for all $n \ge 2$. Why not? [Hint: There exist white horses. There exist black horses.] Answer: Because P(2) is false.