Math 230 E

Exam 3 - Fri Dec 2
Fall 2011
Drew Armstrong

There are 4 problems, worth 6 points each. There is 1 bonus point for writing your name. This is a closed book test. Anyone caught cheating will receive a score of zero.

1. [6 points]
(a) How many words are there with n letters from the alphabet $\{a, b\}$?

$$
2^{n}
$$

(b) How many words are there with k "a"s and $n-k$ "b"s?

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

(c) How many words are there with k "a"s, ℓ "b"s and $n-k-\ell$ "c"s?

$$
\binom{n}{k, \ell, n-k-\ell}=\frac{n!}{k!\ell!(n-k-\ell)!}
$$

(d) How many words are there with n letters from the alphabet $\{a, b, c\}$?

$$
3^{n}
$$

(e) Accurately state the Trinomial Theorem. This can we said in a few ways. For example:

$$
(a+b+c)^{n} \sum_{\substack{i, j, k \in \mathbb{N} \\ i+j+k=n}} \frac{n!}{i!j!k!} a^{i} b^{j} c^{k}
$$

2. [6 points] Recall that the Fibonacci numbers are defined by

$$
f(n):= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ f(n-1)+f(n-2) & \text { if } n \geq 2\end{cases}
$$

Let $P(n)$ be the statement " $f(n)<2^{n}$ ".
(a) Verify a sufficient number of base cases.

Note that $P(0)=" f(0)=0<1=2^{0 "}=T$ and $P(1)=" f(1)=1<2=2^{1 "}=T$.
(b) Let $k \geq 2$ and state your induction hypothesis.

Fix $k \geq 2$ and assume that for all $0 \leq n \leq k$ we have $P(n)=" f(n)<2^{n} "=T$.
(c) Show that your induction hypothesis implies that $P(k+1)$ is true.

In this case, note that

$$
f(k+1)=f(k)+f(k-1) \leq 2^{k}+2^{k-1}<2^{k}+2^{k}=2^{k+1}
$$

hence $P(k+1)$ is true.
3. [6 points] Let $P(n)$ be the statement "For any sets $A_{1}, A_{2}, \ldots, A_{n} \subseteq U$ we have

$$
\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)^{c}=A_{1}^{c} \cap A_{2}^{c} \cap \cdots \cap A_{n}^{c} .
$$

The base case $P(2)$ is called De Morgan's Law and it is true. Prove by induction that $P(n)$ is true for all $n \geq 2$, in three steps.
(a) Accurately state the principle of induction.

Let $P: \mathbb{N} \rightarrow\{T, F\}$. If (1) $P(b)=T$ for some b and if (2) for all $k \geq b$ we have $P(k) \Rightarrow P(k+1)$, then $P(n)=T$ for all $n \geq b$.
(b) Let $k \geq 2$ and state your induction hypothesis.

Fix $k \geq 2$ and assume that $P(k)=T$; i.e. for all $A_{1}, \ldots, A_{k} \subseteq U$ we have

$$
\left(A_{1} \cup \cdots \cup A_{k}\right)^{c}=A_{1}^{c} \cap \cdots \cap A_{k}^{c} .
$$

(c) Prove that your induction hypothesis implies that $P(k+1)$ is true.

Now consider any $A_{1}, \ldots, A_{k+1} \subseteq U$. In this case we have

$$
\begin{aligned}
\left(A_{1} \cup \cdots \cup A_{k+1}\right) & =\left(\left(A_{1} \cup \cdots \cup A_{k}\right) \cup A_{k+1}\right)^{c} \\
& =\left(A_{1} \cup \cdots \cup A_{k}\right)^{c} \cap A_{k+1}^{c} \\
& =A_{1}^{c} \cap \cdots \cap A_{k}^{c} \cap A_{k+1}^{c} .
\end{aligned}
$$

Hence $P(k+1)=T$.
4. [6 points] The following problems can be solved by manipulating the polynomial $(1+x)^{n}$ and plugging in appropriate values for x.
(a) For all $n \geq 1$ prove that $\sum_{k=0}^{n} 2^{k}\binom{n}{k}=3^{n}$.

By putting $x=2$ in $(1+x)^{n}=\sum_{k=0}^{n} x^{k}\binom{n}{k}$ we get $3^{n}=\sum_{k=0}^{n} 2^{k}\binom{n}{k}$.
(b) For all $n \geq 1$ prove that $\sum_{k=0}^{n} k 3^{k-1}\binom{n}{k}=n 4^{n-1}$.

First differentiate both sides of $(1+x)^{n}=\sum_{k=0}^{n} x^{k}\binom{n}{k}$ by x to get $n(1+x)^{n-1}=$ $\sum_{k=0}^{n} k x^{k-1}\binom{n}{k}$. Then put $x=3$ to get $n 4^{n-1}=\sum_{k=0}^{n} k 3^{k-1}\binom{n}{k}$.
(c) Evaluate the sum $\sum_{k=0}^{n} k 3^{k}\binom{n}{k}$.

By part (b) we have

$$
\sum_{k=0}^{n} k 3^{k}\binom{n}{k}=3\left(\sum_{k=0}^{n} k 3^{k-1}\binom{n}{k}\right)=3\left(n 4^{n-1}\right)
$$

