There are 4 problems, worth 5 points each. This is a closed book test. Anyone caught cheating will receive a score of zero.

Problem 1.

(a) Use the Extended Euclidean Algorithm to compute gcd(12, 7). Consider the collection of triples $(x, y, r) \in \mathbb{Z}^{3}$ such that $12 x+7 y=r$. We perform the Extended Euclidean Algorithm on these triples.

x	y	r
1	0	12
0	1	7
1	-1	5
-1	2	2
3	-5	1
-7	12	0

We conclude that $\operatorname{gcd}(12,7)=1$.
(b) Tell me the complete solution to the equation $12 x+7 y=2$. That is, tell me all pairs of integers $(x, y) \in \mathbb{Z}^{2}$ that satisfy the equation. [Hint: You did most of the work in part (a).]

The second last row tells us that $12(3)+7(-5)=1$. Doubling this solution gives $12(6)+7(-10)=2$. This is one particular solution to the equation $12 x+7 y=2$. The general solution to the homogeneous equation $12 x+7 y=0$ is given by the last row above: we have $12(-7 k)+7(12 k)=0$ for all $k \in \mathbb{Z}$. Combining these gives the complete solution to the non-homogeneous equation $12 x+7 y=2$:

$$
(x, y)=(6-7 k,-10+12 k) \quad \text { for all } k \in \mathbb{Z}
$$

Problem 2. Let $a, b, c \in \mathbb{Z}$ with $d:=\operatorname{gcd}(b, c)$.
(a) If $a \mid b$ and $a \mid c$, prove that a divides $b x+c y$ for all $x, y \in \mathbb{Z}$.

Proof. Suppose that $a \mid b$ and $a \mid c$, say $b=a k$ and $c=a \ell$ for some $k, \ell \in \mathbb{Z}$. Then for any $x, y \in \mathbb{Z}$ we have

$$
b x+c y=(a k) x+(a \ell) y=a(k x)+a(\ell y)=a(k x+\ell y),
$$

hence $a \mid(b x+c y)$.
(b) Accurately state "Bézout's Identity."
"For all $a, b \in \mathbb{Z}$, there exist $x, y \in \mathbb{Z}$ such that $a x+b y=\operatorname{gcd}(a, b) . "$
(c) If $a \mid b$ and $a \mid c$, prove that a divides $d=\operatorname{gcd}(b, c)$.

Proof. By Bézout's Identity there exist $x, y \in \mathbb{Z}$ such that $d=b x+c y$. Then by part (a) we know that a divides d.

Problem 3.

(a) Accurately state (some equivalent version of) the "Well-Ordering Principle."
"Every non-empty set of positive integers has a least element."
More formally:

$$
\forall \emptyset \neq S \subseteq \mathbb{N}, \exists a \in S, \forall b \in S, a \leq b
$$

[Note: The formal statement is just for your information. The informal statement is completely acceptable, and probably preferable.]
(b) Explicitly use the Well-Ordering Principle to prove that every integer $n>1$ has a prime factor (that is, there exists a prime $p \in \mathbb{Z}$ such that $p \mid n$). [Hint: Consider the set S of integers $n>1$ that do not have a prime factor. Suppose for contradiction that this set is not empty.]

Proof. Let S be the set of integers $n>1$ that do not have a prime factor (that is, for all $n \in S$ there does not exist a prime p such that $p \mid n$). Suppose for contradiction that this set is not empty. Then by the Well-Ordering Principle, S has a least element. Call it $m \in S$.

Since m has no prime factor, m itself is not prime. Thus it can be written as a product $m=a b$ with $1<a, b<m$. Since $1<a<m$ and m is smallest in S we know that a does have a prime factor. That is, there exists a prime p and an integer k such that $a=p k$. But then $m=a b=(p k) b=p(k b)$. Contradiction.

Problem 4. Let X and Y be any two sets.
(a) Explain in general how to prove that $X \subseteq Y$.

Let x be an arbitrary element of X. Show that x is an element of Y.
Now let $a, b \in \mathbb{Z}$ with $d=\operatorname{gcd}(a, b)$ and define the sets

$$
\begin{aligned}
X & =\{a x+b y: x, y \in \mathbb{Z}\} \\
Y & =\{d z: z \in \mathbb{Z}\}
\end{aligned}
$$

(b) Prove that $X \subseteq Y$.

Proof. Let $a x+b y$ be an arbitrary element of X. Since $d \mid a$ and $d \mid b$ there exist $k, \ell \in \mathbb{Z}$ such that $a=d k$ and $b=d \ell$. But then

$$
a x+b y=(d k) x+(d \ell) y=d(k x)+d(\ell y)=d(k x+\ell y)
$$

is an element of Y.
(c) Prove that $Y \subseteq X$.

Proof. Let $d z$ be an arbitrary element of Y. By Bézout's Identity, there exist $x, y \in \mathbb{Z}$ such that $d=a x+b y$. But then

$$
d z=(a x+b y) z=(a x) k+(b y) z=a(x z)+b(y z)
$$

is an element of X.

