
Math 230 D Fall 2012
Exam 2 — Wed Oct 24 Drew Armstrong

There are 4 problems, worth 5 points each. This is a closed book test. Anyone caught
cheating will receive a score of zero.

Problem 1.

(a) Use the Extended Euclidean Algorithm to compute gcd(12, 7). Consider the col-

lection of triples (x, y, r) ∈ Z3 such that 12x + 7y = r. We perform the Extended
Euclidean Algorithm on these triples.

x y r
1 0 12
0 1 7
1 −1 5
−1 2 2

3 −5 1
−7 12 0

We conclude that gcd(12, 7) = 1.

(b) Tell me the complete solution to the equation 12x + 7y = 2. That is, tell me all
pairs of integers (x, y) ∈ Z2 that satisfy the equation. [Hint: You did most of the
work in part (a).]

The second last row tells us that 12(3) + 7(−5) = 1. Doubling this solution gives
12(6)+7(−10) = 2. This is one particular solution to the equation 12x+7y = 2.
The general solution to the homogeneous equation 12x + 7y = 0 is given by the
last row above: we have 12(−7k) + 7(12k) = 0 for all k ∈ Z. Combining these gives
the complete solution to the non-homogeneous equation 12x + 7y = 2:

(x, y) = (6− 7k,−10 + 12k) for all k ∈ Z.

Problem 2. Let a, b, c ∈ Z with d := gcd(b, c).

(a) If a|b and a|c, prove that a divides bx + cy for all x, y ∈ Z.

Proof. Suppose that a|b and a|c, say b = ak and c = a` for some k, ` ∈ Z. Then for
any x, y ∈ Z we have

bx + cy = (ak)x + (a`)y = a(kx) + a(`y) = a(kx + `y),

hence a|(bx + cy). �

(b) Accurately state “Bézout’s Identity.”

“For all a, b ∈ Z, there exist x, y ∈ Z such that ax + by = gcd(a, b).”

(c) If a|b and a|c, prove that a divides d = gcd(b, c).

Proof. By Bézout’s Identity there exist x, y ∈ Z such that d = bx + cy. Then by
part (a) we know that a divides d. �



Problem 3.

(a) Accurately state (some equivalent version of) the “Well-Ordering Principle.”

“Every non-empty set of positive integers has a least element.”

More formally:

∀ ∅ 6= S ⊆ N,∃ a ∈ S,∀ b ∈ S, a ≤ b.

[Note: The formal statement is just for your information. The informal statement is
completely acceptable, and probably preferable.]

(b) Explicitly use the Well-Ordering Principle to prove that every integer n > 1 has a
prime factor (that is, there exists a prime p ∈ Z such that p|n). [Hint: Consider the
set S of integers n > 1 that do not have a prime factor. Suppose for contradiction
that this set is not empty.]

Proof. Let S be the set of integers n > 1 that do not have a prime factor (that is, for
all n ∈ S there does not exist a prime p such that p|n). Suppose for contradiction that
this set is not empty. Then by the Well-Ordering Principle, S has a least element. Call it
m ∈ S.

Since m has no prime factor, m itself is not prime. Thus it can be written as a product
m = ab with 1 < a, b < m. Since 1 < a < m and m is smallest in S we know that a does
have a prime factor. That is, there exists a prime p and an integer k such that a = pk.
But then m = ab = (pk)b = p(kb). Contradiction. �

Problem 4. Let X and Y be any two sets.

(a) Explain in general how to prove that X ⊆ Y .

Let x be an arbitrary element of X. Show that x is an element of Y .

Now let a, b ∈ Z with d = gcd(a, b) and define the sets

X = {ax + by : x, y ∈ Z},
Y = {dz : z ∈ Z}.

(b) Prove that X ⊆ Y .

Proof. Let ax + by be an arbitrary element of X. Since d|a and d|b there exist
k, ` ∈ Z such that a = dk and b = d`. But then

ax + by = (dk)x + (d`)y = d(kx) + d(`y) = d(kx + `y)

is an element of Y . �

(c) Prove that Y ⊆ X.

Proof. Let dz be an arbitrary element of Y . By Bézout’s Identity, there exist
x, y ∈ Z such that d = ax + by. But then

dz = (ax + by)z = (ax)k + (by)z = a(xz) + b(yz)

is an element of X. �


