There are 4 problems, worth 5 points each. This is a closed book test. Anyone caught cheating will receive a score of zero.

Problem 1. Let P and Q be Boolean variables.
(a) Draw the truth table for the Boolean function $P \Rightarrow Q$.

$$
\begin{array}{ccc}
P & Q & P \Rightarrow Q \\
\hline T & T & T \\
T & F & F \\
F & T & T \\
F & F & T
\end{array}
$$

(b) Use a truth table to prove that $P \Rightarrow Q$ is logically equivalent to the Boolean function (NOT P) OR Q.

$$
\begin{array}{ccccc}
P & Q & \text { NOTP } & (\text { NOT } P) \text { OR } Q & P \Rightarrow Q \\
\hline T & T & F & T & T \\
T & F & F & F & F \\
F & T & T & T & T \\
F & F & T & T & T
\end{array}
$$

(c) Apply de Morgan's law and part (b) to find an expression for NOT $(P \Rightarrow Q)$.

$$
\begin{aligned}
\operatorname{NOT}(P \Rightarrow Q) & =\operatorname{NOT}((\operatorname{NOT} P) \operatorname{OR} Q) \\
& =(\operatorname{NOT}(\operatorname{NOT} P)) \operatorname{AND}(\operatorname{NOT} Q) \\
& =P \operatorname{AND}(\operatorname{NOT} Q) .
\end{aligned}
$$

Problem 2. Let P, Q and R be Boolean variables.
(a) Use a truth table to prove that the Boolean function $P \Rightarrow(Q \Rightarrow R)$ is logically equivalent to $X:=(P$ AND $($ NOT $R)) \Rightarrow($ NOT $Q)$.

| P | Q | R | $Q \Rightarrow R$ | $P \Rightarrow(Q \Rightarrow R)$ | NOT R | P AND (NOT $R)$ | NOT Q | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | F | F | F | T |
| T | T | F | F | F | T | T | F | F |
| T | F | T | T | T | F | F | T | T |
| T | F | F | T | T | T | T | T | T |
| F | T | T | T | T | F | F | F | T |
| F | T | F | F | T | T | F | F | T |
| F | F | T | T | T | F | F | T | T |
| F | F | F | T | T | T | F | T | T |

(b) Now let m and n be integers and consider the following statement: "If m is odd, then whenever $m n$ is even, it follows that n is even." Define P, Q and R so this statement has the form $P \Rightarrow(Q \Rightarrow R)$.

Let $P=" m$ is odd", $Q=" m n$ is even" and $R=" n$ is even."
(c) Use part (a) to prove the statment from part (b).

Proof. Instead of the statement $P \Rightarrow(Q \Rightarrow R)$, we will prove the statement $(P$ AND (NOT $R)) \Rightarrow$ (NOT Q), which is logically equivalent by part (a). That is, we will prove that for all integers $m, n \in \mathbb{Z}$ we have (m is odd and n is odd) $\Rightarrow(m n$ is odd).

So suppose that m and n are both odd, say $m=2 k+1$ and $n=2 \ell+1$ for some integers $k, \ell \in \mathbb{Z}$. Then we have

$$
\begin{aligned}
m n & =(2 k+1)(2 \ell+1) \\
& =4 k \ell+2 k+2 \ell+1 \\
& =2(2 k \ell+k+\ell)+1,
\end{aligned}
$$

which is odd, as desired.
Problem 3. Let n be an integer and assume for the moment the following fact: "If n^{2} is a multiple of 5 , then so is n." Use this fact (i.e. quote it at the appropriate time) to prove by contradiction that $\sqrt{5}$ is not a ratio of integers.

Proof. Suppose for contradiction that $\sqrt{2}$ is a ratio of integers. Then we can write $\sqrt{2}=a / b$ where $a, b \in \mathbb{Z}$ are integers with no common divisor (i.e. the fraction is in "lowest terms"). Squaring both sides gives $2=a^{2} / b^{2}$ and then multiplying by b^{2} gives $a^{2}=2 b^{2}$. Now we see that a^{2} is even, and the FACT implies that a is even, say $a=2 k$. Substituting this into $a^{2}=2 b^{2}$ gives $4 k^{2}=2 b^{2}$, or $2 k^{2}=b^{2}$. Hence b^{2} is even, and the FACT implies that b itself is even. We now have that a and b are both even, but this contradicts the assumption that they have no common divisor.

Problem 4. Let n be an integer.
(a) What is the contrapositive of this statement?

$$
\text { "If } n^{2} \text { is a multiple of } 5 \text {, then so is } n . "
$$

Let $P=" n$ is a multiple of $5 "$ and let $Q=" n$ is a multiple of 5 ." Then the contrapositive of $P \Rightarrow Q$ is (NOT $Q) \Rightarrow($ NOT $P)$, which says: "If n is not a multiple of 5 , then neither is n^{2}."
(b) If you want to prove the statement from (a), the argument will break into four cases. Tell me what the four cases are.

To prove the statement, we assume that n is not a multiple of 5 . There are four ways this can happen: (1) $n=5 k+1$ for some $k \in \mathbb{Z}$, (2) $n=5 k+2$ for some $k \in \mathbb{Z}$, (3) $n=5 k+3$ for some $k \in \mathbb{Z}$, and (4) $n=5 k+4$ for some $k \in \mathbb{Z}$.
(c) [1 Bonus Point] Finish the proof of the statement from (a). (Use the back of the page if necessary.)

Squaring n in each case gives: (1) $n^{2}=5\left(5 k^{2}+2 k\right)+1$, (2) $n^{2}=5\left(5 k^{2}+4 k\right)+4$, (3) $n^{2}=5\left(5 k^{2}+6 k+1\right)+4$, and (4) $n^{2}=5\left(5 k^{2}+8 k+3\right)+1$. In any case, we conclude that n^{2} is not a multiple of 5 , as desired.

