Problem 1. Let $X_{1}, X_{2}, \ldots, X_{36}$ be an iid sample with $E\left[X_{i}\right]=1 / 2$ and $\operatorname{Var}\left(X_{i}\right)=1 / 4$. Consider the sample mean:

$$
\bar{X}=\frac{1}{36}\left(X_{1}+X_{2}+\cdots+X_{36}\right) .
$$

(a) Compute $E[\bar{X}]$ and $\operatorname{Var}(\bar{X})$.

Since the expected value is linear we have

$$
E[\bar{X}]=\frac{E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{36}\right]}{36}=\frac{36 \cdot(1 / 2)}{36}=1 / 2 .
$$

Since the sample is independent we also have

$$
\operatorname{Var}(\bar{X})=\frac{\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{36}\right)}{36^{2}}=\frac{36 \cdot(1 / 4)}{36^{2}}=1 / 144 .
$$

(b) Use the Central Limit Theorem to estimate the probability $P(0.48<\bar{X}<0.54)$.

From the CLT we know that $(\bar{X}-0.5) / \sqrt{1 / 144}=(\bar{X}-0.5) /(1 / 12)=12(\bar{X}-0.5)$ is approximately standard normal. Therefore we have

$$
\begin{aligned}
P(0.48<\bar{X}<0.52) & =P(-0.02<\bar{X}-0.5<0.04) \\
& =P(-0.24<12(\bar{X}-0.5)<0.48) \\
& \approx P(-0.24<Z<0.48) \\
& =\Phi(0.48)-\Phi(-0.24) \\
& =\Phi(0.48)+\Phi(0.24)-1 \\
& =0.6844+0.5948-1=27.92 \% .
\end{aligned}
$$

(c) Use the Central Limit Theorem to find a number k such that $P(\bar{X}>k) \approx 5 \%$.

Since $12(\bar{X}-0.5)$ is approximately standard normal we will work backwards:

$$
\begin{aligned}
P(Z>1.645) & =5 \%, \\
P(12(\bar{X}-0.5)>1.645) & \approx 5 \%, \\
P\left(\bar{X}>\frac{1.645}{12}+0.5\right) & \approx 5 \%, \\
P(\bar{X}>0.64) & \approx 5 \% .
\end{aligned}
$$

Problem 2. The following iid sample comes from a normal distribution $N\left(\mu, \sigma^{2}\right)$:

1.3	2.1	2.5	3.1

(a) Compute the sample mean \bar{X} and sample variance S^{2}.

We have

$$
\bar{X}=\frac{1.3+2.1+2.5+3.1}{4}=\frac{9.1}{4}=2.275
$$

and

$$
S^{2}=\frac{(1.3-2.25)^{2}+(2.1-2.25)^{2}+(2.5-2.25)^{2}+(3.1-2.25)^{2}}{3}=0.57
$$

(b) Compute a two-sided 98% confidence interval for μ.

At $(1-\alpha) 100 \%=98 \%$ confidence we have $\alpha=0.2$ and hence $t_{\alpha / 2}(3)=4.541$:

$$
\begin{aligned}
\bar{X}-t_{\alpha / 2}(n-1) \cdot \sqrt{\frac{S^{2}}{n}} & <\mu<\bar{X}+t_{\alpha / 2}(n-1) \cdot \sqrt{\frac{S^{2}}{n}} \\
2.25-4.541 \cdot \sqrt{\frac{0.57}{4}} & <\mu<2.25-4.541 \cdot \sqrt{\frac{0.57}{4}} \\
2.25-1.71 & <\mu<2.25-1.71 .
\end{aligned}
$$

(c) Test the hypothesis $H_{0}=" \mu=2$ " against $H_{1}=" \mu>2$ " at 5% significance.

At significance $\alpha=5 \%$ we have $t_{\alpha}(3)=2.353$. The rejection region is

$$
\begin{aligned}
& \bar{X}>\mu_{0}+t_{\alpha}(n-1) \cdot \sqrt{\frac{S^{2}}{n}} \\
& \bar{X}>2+2.353 \cdot \sqrt{\frac{0.57}{4}} \\
& \bar{X}>2+0.89 .
\end{aligned}
$$

Since $\bar{X}=2.25$ we do not reject H_{0}. [That's good, because my computer generated this sample from $N(2,1)$.]

