Problem 1. Let X be the continuous random variable defined by the following pdf:

$$
f(x):= \begin{cases}2 x & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the mean $\mu=E[X]$.

$$
E[X]=\int_{0}^{1} x \cdot f(x) d x=\int_{0}^{1} 2 x^{2} d x=\left.2 \cdot \frac{x^{3}}{3}\right|_{0} ^{1}=\frac{2}{3}
$$

(b) Compute the variance $\sigma^{2}=\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}$.

First we compute the second moment:

$$
E\left[X^{2}\right]=\int_{0}^{1} x^{2} \cdot f(x) d x=\int_{0}^{1} 2 x^{3} d x=\left.2 \cdot \frac{x^{4}}{4}\right|_{0} ^{1}=\frac{1}{2}
$$

Then we compute the variance:

$$
\sigma^{2}=\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=\frac{1}{2}-\left(\frac{2}{3}\right)^{2}=\frac{1}{18}
$$

(c) Draw the graph of $f(x)$, labeled with μ and σ. [Estimate the value of σ.]

Note that the standard deviation is $\sigma=\sqrt{1 / 18} \approx 0.24$. Here is the picture:

Problem 2. Let Z be a standard normal random variable (i.e., with $\mu=0$ and $\sigma=1$).
(a) Tell me the probability density function:

$$
f_{Z}(x)=\frac{1}{\sqrt{2 \pi}} \cdot e^{-x^{2} / 2}
$$

(b) Sketch the graph of $f_{Z}(x)$, showing the maximum and the points of inflection.

(c) Use the attached table to compute the probability $P(-0.25<Z<0.5)$.

$$
\begin{aligned}
P(-0.25<Z<0.5) & =\Phi(0.5)-\Phi(-0.25) \\
& =\Phi(0.5)-(1-\Phi(0.25)) \\
& =\Phi(0.5)+\Phi(0.25)-1 \\
& =(0.6915)+(0.5987)-1 \\
& =29.02 \% .
\end{aligned}
$$

