Problem 1. Let X be the continuous random variable defined by the following pdf:

$$f(x) := \begin{cases} 2x & 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Compute the mean $\mu = E[X]$.

$$E[X] = \int_0^1 x \cdot f(x) \, dx = \int_0^1 2x^2 \, dx = 2 \cdot \frac{x^3}{3} \Big|_0^1 = \frac{2}{3}$$

(b) Compute the variance $\sigma^2 = \operatorname{Var}(X) = E[X^2] - E[X]^2$.

First we compute the second moment:

$$E[X^{2}] = \int_{0}^{1} x^{2} \cdot f(x) \, dx = \int_{0}^{1} 2x^{3} \, dx = 2 \cdot \frac{x^{4}}{4} \Big|_{0}^{1} = \frac{1}{2}$$

Then we compute the variance:

$$\sigma^2 = \operatorname{Var}(X) = E[X^2] - E[X]^2 = \frac{1}{2} - \left(\frac{2}{3}\right)^2 = \frac{1}{18}$$

(c) Draw the graph of f(x), labeled with μ and σ . [Estimate the value of σ .]

Note that the standard deviation is $\sigma = \sqrt{1/18} \approx 0.24$. Here is the picture:

Problem 2. Let Z be a standard normal random variable (i.e., with $\mu = 0$ and $\sigma = 1$).

(a) Tell me the probability density function:

$$f_Z(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$$

(b) Sketch the graph of $f_Z(x)$, showing the maximum and the points of inflection.

(c) Use the attached table to compute the probability P(-0.25 < Z < 0.5).

$$P(-0.25 < Z < 0.5) = \Phi(0.5) - \Phi(-0.25)$$

= $\Phi(0.5) - (1 - \Phi(0.25))$
= $\Phi(0.5) + \Phi(0.25) - 1$
= $(0.6915) + (0.5987) - 1$
= 29.02%.