Problem 1. Recall that a standard deck of 52 cards contains 13 card of each suit (clubs, diamonds, hearts and spades). Suppose that two cards are dealt without replacement from a standard deck and consider the events

$$
\begin{aligned}
& A=\{\text { first card is a club }\}, \\
& B=\{\text { second card is a club }\} .
\end{aligned}
$$

(a) Compute $P(A)$ and $P(B)$.

Since there are 13 clubs in 52 equally likely cards, we have $P(A)=13 / 52=1 / 4$. By ignoring the first card, I claim that we also have $P(B)=1 / 4$. If you don't believe this, see below.
(b) Compute the forwards probabilities $P(B \mid A)$ and $P\left(B \mid A^{\prime}\right)$.

If the first card is a club then there are 12 clubs in the remaining 51 cards:

$$
P(B \mid A)=\frac{12}{51}
$$

If the first card is not a club then there are 13 clubs in the remaining 51 cards:

$$
P\left(B \mid A^{\prime}\right)=\frac{13}{51} .
$$

This allows us to verify our computation of $P(B)$:

$$
\begin{aligned}
P(B) & =P(A \cap B)+P\left(A^{\prime} \cap B\right) \\
& =P(A) P(B \mid A)+P\left(A^{\prime}\right) P\left(B \mid A^{\prime}\right) \\
& =\frac{1}{4} \cdot \frac{12}{51}+\frac{3}{4} \cdot \frac{13}{51} \\
& =\frac{1}{4}\left(\frac{12+3 \cdot 13}{51}\right)=\frac{1}{4} \cdot \frac{51}{51}=\frac{1}{4} .
\end{aligned}
$$

(c) Compute the backward probability $P(A \mid B)$.

By definition of conditional probability we have

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P(B \mid A)}{P(B)}=\frac{(1 / 4)(12 / 51)}{1 / 4}=\frac{12}{51} .
$$

I guess that makes sense. It's like the order of the two cards doesn't matter.

Problem 2. An urn contains 2 red and 2 green balls. Suppose you grab 2 balls without replacement and let R be the number of red balls you get.
(a) Compute the probability mass function $P(R=k)$.

This is a "hypergeometric random variable" with pmf given by

$$
P(R=k)=\frac{\binom{2}{k}\binom{2-k}{2}}{\binom{4}{2}}
$$

Here is a table:

k	0	1	2
$P(R=k)$	$\frac{\binom{2}{0}\binom{2}{2}}{\binom{2}{2}}=\frac{1}{6}$	$\frac{\binom{2}{1}\binom{2}{1}}{\binom{2}{2}}=\frac{4}{6}$	$\frac{\binom{2}{2}\binom{2}{0}}{\binom{2}{2}}=\frac{1}{6}$

(b) Draw a picture of the probability mass function from part (a).

(c) Compute the expected value $E[R]$ and add this to your picture.

The center of mass (expected value) is

$$
\begin{aligned}
\mu=E[R] & =0 \cdot P(R=0)+1 \cdot P(R=1)+2 \cdot P(R=2) \\
& =0 \cdot \frac{1}{6}+1 \cdot \frac{4}{6}+2 \cdot \frac{1}{6}=1 .
\end{aligned}
$$

We could have guessed this because the distribution is symmetric.

