Problem 1. A fair 6 -sided die has 3 sides painted red, 2 sides painted green and 1 side painted blue. Suppose you roll the die 4 times and let R, G, B denote the number of times you get red, green, blue, respectively.
(a) Compute $P(R=3, G=1, B=0)$.

$$
P(R=3, G=1, B=0)=\frac{4!}{3!1!0!}\left(\frac{3}{6}\right)^{3}\left(\frac{2}{6}\right)^{1}\left(\frac{1}{6}\right)^{0}=\frac{1}{6}
$$

(b) Compute $P(R=4, G=0, B=0)$.

$$
P(R=4, G=0, B=0)=\frac{4!}{4!0!0!}\left(\frac{3}{6}\right)^{4}\left(\frac{2}{6}\right)^{0}\left(\frac{1}{6}\right)^{0}=\frac{1}{16}
$$

(c) Compute $P(B \geq 1)$.

We think of the die as a coin with $P($ blue $)=1 / 6$ and $P($ not blue $)=5 / 6$. Then

$$
P(B \geq 1)=1-P(B=0)=1-P(\text { not blue })^{4}=1-\left(\frac{5}{6}\right)^{4}=51.8 \%
$$

Problem 2. An urn contains 3 red balls, 2 green balls and 1 blue ball. You reach in and grab 4 balls (without replacement). Let R, G, B denote the number of red, green, blue balls that you get, respectively.
(a) Compute $P(R=3, G=1, B=0)$.

$$
P(R=2, G=1, B=1)=\frac{\binom{3}{3}\binom{2}{1}\binom{1}{0}}{\binom{6}{4}}=\frac{2}{15}
$$

(b) Compute $P(R=4, G=0, B=0)$.

Since there are only 3 red balls it is impossible to get 4 . If we write $\binom{3}{4}=0$ then the general formula gives the correct answer:

$$
P(R=4, G=0, B=0)=\frac{\binom{3}{4}\binom{2}{0}\binom{1}{0}}{\binom{6}{4}}=0
$$

(c) Compute $P(B \geq 1)$. [Hint: There is only 1 blue ball in the urn.]

We will treat the balls as "blue" and "not blue." Since there is 1 blue ball and 5 non-blue balls we have the following possibilities:

$$
\begin{aligned}
& P(B=0)=\frac{\binom{1}{0}\binom{5}{4}}{\binom{6}{4}}=\frac{1}{3}, \\
& P(B=1)=\frac{\binom{1}{1}\binom{5}{3}}{\binom{6}{4}}=\frac{2}{3} .
\end{aligned}
$$

We conclude that

$$
P(B \geq 1)=P(B=1)=\frac{2}{3} .
$$

