Math 224
Summer 2019
Quiz 1

Problem 1. Let S be a sample space of twelve equally likely outcomes: $\# S=12$. Now consider two events $A, B \subseteq S$ such that

$$
\# A=7, \quad \# B=5 \quad \text { and } \quad \#(A \cup B)=9
$$

(a) Find the number of outcomes in the intersection: $\#(A \cap B)$.

$$
\begin{aligned}
& \#(A \cup B)=\# A+\# B-\#(A \cap B) \\
& \#(A \cap B)=\# A+\# B-\#(A \cup B) \\
& \#(A \cup B)=7+5-9=3
\end{aligned}
$$

(b) Compute the probability that " A and B both happen."

Since the outcomes are equally likely we have

$$
P(A \cap B)=\frac{\#(A \cap B)}{\# S}=\frac{3}{12}=25 \% .
$$

(c) Compute the probability that " A happens and B does not happen."

A Venn diagram can help with this:

Or we we can use the formula $\# A=\#(A \cap B)+\#\left(A \cap B^{\prime}\right)$. Either way we find that $\#\left(A \cap B^{\prime}\right)=4$ and hence

$$
P\left(A \cap B^{\prime}\right)=\frac{\#\left(A \cap B^{\prime}\right)}{\# S}=\boxed{\frac{4}{12}}=33.3 \% .
$$

Problem 2. A coin is flipped 4 times in sequence. Compute the following probabilities, assuming that $P(H)=1 / 3$ and $P(T)=2 / 3$.
(a) The probability of getting the sequence $H T H T$.

Since the coin flips are independent we have

$$
P(H T H T)=P(H) P(T) P(H) P(T)=\frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{2}{3}=\frac{4}{81}=4.9 \% .
$$

(b) The probability of getting "exactly 2 heads."

The number of ways to get 2 heads is $\binom{4}{2}=6$. If X is the number of heads then

$$
P(X=2)=\binom{4}{2} P(H)^{2} P(T)^{2}=6 \cdot \frac{4}{81}=\frac{24}{81}=29.6 \% .
$$

(c) The probability of getting "at least 1 head."

$$
P(X \geq 1)=1-P(X=0)=1-\left(\frac{2}{3}\right)^{4}=\frac{81}{81}-\frac{16}{81}=\frac{65}{81}=80.2 \% .
$$

