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4 Epilogue: Bayesian Estimation 178

1 Introduction to Probability

1.1 Motivation: Coin Flipping

The art of statistics is based on the experimental science of probability. Probability, in turn,
is expressed in the language of mathematical physics. Indeed, the first historical application
of statistics was to problems of astronomy. The fundamental analogy of the subject is that

probability « mass.

Prior to 1650, probability was not regarded as a quantitative subject. The idea that one
could do numerical computations to predict events in the future was not widely accepted.
The modern subject was launched when a French nobleman known as the Chevalier de Méré1

enlisted the help of prominent French mathematicians to solve some problems related to
gambling and games of chance. Here is one of the problems that the Chevalier proposed.

Chevalier de Méré’s Problem

Consider the following two events:

(1) Getting at least one “six” in 4 rolls of a fair six-sided die.

(2) Getting at least one “double six” in 24 rolls of a pair of fair six-sided dice.

From his gambling experience the Chevalier observed that the chance of (1) was slightly
more then 50% and the chance of (2) was slightly less than 50%, but he couldn’t find a
satisfying mathematical explanation.

The mathematician Blaise Pascal (1623–1662) found a solution to this and other similar prob-
lems, and through his correspondence with Pierre de Fermat (1607–1665) the two mathemati-
cians developed the first mathematical framework for the rigorous study of probability. To
understand the Chevalier’s problem we will first consider a more general problem that was
also solved by Pascal. At the end of the section I’ll explain what coin flipping has to do with
dice rolling.

1His real name was Antoine Gombaud (1607–1687). As well as being a nobleman, he was also a writer and
intellectual on the Salon circuit. In his written dialogues he adopted the title of Chevalier (Knight) for the
character that expressed his own views, and his friends later called him by that name.

2



Pascal’s Problem

A two-sided coin (we call the sides “heads” and “tails”) is flipped n times. What is the
probability that “heads” shows up exactly k times?

For example, let n “ 4 and k “ 2. Let X denote the number of heads that occur in a given
run of the experiment (this X is an example of a random variable). Now we are looking for
the probability of the event “X “ 2.” In other words, we wan to find a number that in some
sense measures how likely this event is to occur:

P pX “ 2q “ ?

Since the outcome of the experiment is unknown to us (indeed, it is random), the only thing
we can reasonably do is to enumerate all of the possible outcomes. If we denote “heads” by
H and “tails” by T then we can list the possible outcomes as in the following table:

X “ 0 TTTT

X “ 1 HTTT, THTT, TTHT, TTTH

X “ 2 HHTT,HTHT,HTTH, THHT, THTH, TTHH

X “ 3 THHH,HTHH,HHTH,HHHT

X “ 4 HHHH

We observe that there are 16 possible outcomes, which is not a surprise because 16 “ 24.
Indeed, since each coin flip has two possible outcomes we can simply multiply the possibilities:

(total # outcomes) “ (# flip 1 outcomes)ˆ ¨ ¨ ¨ ˆ (# flip 4 outcomes)

“ 2ˆ 2ˆ 2ˆ 2

“ 24

“ 16.

If the coin is “fair” we will assume that each of these 16 outcomes is equally likely to occur. In
such a situation, Fermat and Pascal decided that the correct way to measure the probability of
an event E is to count the number of ways that E can happen. That is, for a given experiment
with equally likely outcomes we will define the probability of E as

P pEq “
# ways that E can happen

total # of possible outcomes
.
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In more modern terms, we let S denote the set of all possible outcomes (called the sample
space of the experiment). Then an event is any subset E Ď S, which is just the subcollection
of the outcomes that we care about. Then we can express the Fermat-Pascal definition of
probabiliy as follows.

First Definition of Probability

Let S be a finite sample space. If each of the possible outcomes is equally likely then
we define the probability of an event E Ď S as the ratio

P pEq “
#E

#S

where #E and #S denote the number of elements in the sets E and S, respectively.

In our example we can express the sample space as

S “ tTTTT,HTTT, THTT, TTHT, TTTH,HHTT,HTHT,HTTH,

THHT, THTH, TTHH, THHH,HTHH,HHTH,HHHT,HHHHu

and the event E “ “X “ 2” corresponds to the subset

E “ tHHTT,HTHT,HTTH, THHT, THTH, TTHHu,

so that #S “ 16 and #E “ 6. Thus the probability of E is

P p“2 heads in 4 coin flips”q “ P pX “ 2q

“ P pEq

“
#E

#S

“
# ways to get 2 heads

total # ways to flip 4 coins

“
6

16
.

We have now assigned the number 6{16, or 3{8, to the event of getting exactly 2 heads in 4
flips of a fair coin. Following Fermat and Pascal, we interpret this number as follows:

By saying that P p“2 heads in 4 flips”q “ 3{8 we mean that we expect on average to get the
event “2 heads” in 3 out of every 8 runs of the experiment “flip a fair coin 4 times.”
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I want to emphasize that this is not a purely mathematical theorem but instead it is a theo-
retical prediction about real coins in the real world. As with mathematical physics, the theory
is only good if it makes accurate predictions. I encourage you to perform this experiment with
your friends to test whether the prediction of 3{8 is accurate. If it is, then it must be that the
assumptions of the theory are reasonable.

More generally, for each possible value of k we will define the event

Ek “ “X “ k” “ “we get exactly k heads in 4 flips of a fair coin.”

From the table above we see that

#E0 “ 1, #E1 “ 4, #E2 “ 6, #E3 “ 4, #E4 “ 1.

Then from the formula P pEkq “ #Ek{#S we obtain the following table of probabilities:

k 0 1 2 3 4

P pX “ kq 1
16

4
16

6
16

4
16

1
16

Now let us consider the event that we obtain “at least 2 heads in 4 flips of a fair coin,” which
we can write as “X ě 2.” According to Fermat and Pascal, we should define

P pX ě 2q “
# ways for X ě 2 to happen

16
.

Note that we don’t have to compute this from scratch because the event “X ě 2” can be
decomposed into smaller events that we already understand. In logical terms we express this
by using the word “or”:

“X ě 2” “ “X “ 2 OR X “ 3 OR X “ 4.”

In set-theoretic notation this becomes a union of sets:

“X ě 2” “ E2 Y E3 Y E4.

We say that these events are mutually exclusive because they cannot happen at the same time.
For example, it is not possible to have X “ 2 AND X “ 3 at the same time. Set-theoretically
we write E2 X E3 “ H to mean that the intersection of the events is empty. In this case we
can just add up the elements:

# outcomes corresponding to “X ě 2” “ #E2 `#E3 `#E4

“ 6` 4` 1

“ 11.

We conclude that the probability of getting at least two heads in 4 flips of a fair coin is
P pX ě 2q “ 11{16. However, note that we could have obtained the same result by just
adding the corresponding probabilities:

P pX ě 2q “
# ways to get ě 2 heads

#S
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“
#E2 `#E3 `#E4

#S

“
#E2

#S
`

#E3

#S
`

#E4

#S

“ P pE2q ` P pE3q ` P pE4q

“ P pX “ 2q ` P pX “ 3q ` P pX “ 4q.

It is worth remarking that we can use the same method to compute the probability of the
event “X “ something,” or “something happens.” Since this event is composed of the smaller
and mutually exclusive events “X “ k” for all values of k, we find that

P pX “ somethingq “ P pX “ 0q ` P pX “ 1q ` P pX “ 2q ` P pX “ 3q ` P pX “ 4q

“
1

16
`

4

16
`

6

16
`

4

16
`

1

16

“
1` 4` 6` 4` 1

16

“
16

16
“ 1.

In other words, we say that the probability of getting some number of heads is 1, or that
we expect to get some number of heads in 1 out of every 1 runs of the experiment. That’s
reassuring.

We can also divide up the event “X “ something” in coarser ways. For example, we have

“X “ something” “ “X ă 2 OR X ě 2.”

Since the events “X ă 2” and “X ě 2” are mutually exclusive, we can add the probabilities
to obtain

1 “ P pX “ somethingq “ P pX ă 2q ` P pX ě 2q.

This might not seem interesting, but note that it allows us to compute the probability of
getting “less than 2 heads” without doing any further work:

P pX ă 2q “ 1´ P pX ě 2q “ 1´
11

16
“

16

16
´

11

16
“

5

16
.

Here is the general idea.

Complementary Events

Given an event E Ď S we define the complementary event E1 Ď S which consists of all
of the outcomes that are not in E. Because the events E and E1 are mutually exclusive
(E XE1 “ H) and exhaust all of the possible outcomes (E YE1 “ S) we can count all of
the possible outcomes by adding up the outcomes from E and E1:

#S “ #E `#E1.
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If S consists of finitely many equally likely outcomes then we obtain

P pEq ` P pE1q “
#E

#S
`

#E1

#S
“

#E `#E1

#S
“

#S

#S
“ 1.

This is very useful when E1 is less complicated than E because it allows us to compute
P pEq via the formula P pEq “ 1´ P pE1q.

The simple counting formula P pEq “ #E{#S gives correct predictions when the experiment
has finitely many equally likely outcomes. However, it can fail in two ways:

• It fails when the outcomes are not equally likely.

• It fails when there are infinitely many possible oucomes.

Right now we will only look at the first case and leave the second case for later.

As an example of an experiment with outcomes that are not equally likely we will consider the
case of a “strange coin” with the property that P p“heads”q “ p and P p“tails”q “ q for some
arbitrary numbers p and q. Now suppose that we flip the coin exactly once; the sample space
of this experiment is S “ tH,T u. The events “heads”“ tHu and “tails”“ tT u are mutually
exclusive and exhaust all the possibilities (we assume that the coin never lands on its side).
Even though the outcomes of this experiment are not equally likely we will assume2 that the
probabilities can still be added:

1 “ P p“something happens”q “ P p“heads”q ` P p“tails”q “ p` q.

We will also assume that probabilities are non-negative, so that 1 ´ p “ q ě 0 and hence
0 ď p ď 1. So our strange coin is described by some arbitrary number p between 0 and 1.
Now since 1 “ p` q we can observe the following algebraic formulas:

1 “ p` q

1 “ 12 “ pp` qq2 “ p2 ` 2pq ` q2

1 “ 13 “ pp` qq3 “ p3 ` 3p2q ` 3pq2 ` q3

1 “ 14 “ pp` qq4 “ p4 ` 4p3q ` 6p2q2 ` 4pq3 ` q4.

The binomial theorem 3 tells us that the coefficients in these expansions can be read off from
a table called “Pascal’s Triangle,” in which each entry is the sum of the two entries above:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

2Again, this assumption will be justified if it leads to accurate predictions.
3We’ll have more to say about this later.
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You may notice that the numbers 1, 4, 6, 4, 1 in the fourth row are the same numbers we saw
when counting sequences of 4 coin flips by the number of “heads” that they contain. In general
the number in the k-th entry of the n-th row of Pascal’s triangle is called

`

n
k

˘

, which we read
as “n choose k.” It counts (among other things) the number of sequences of n coin flilps which
contain exactly k “heads.” If we assume that the coin flips are independent (i.e., the coin has
no memory) then we can obtain the probability of such a sequence by simply multiplying the
probabilities from each flip. For example, the probability of getting the sequence HTHT is

P pHTHT q “ P pHqP pT qP pHqP pT q “ pqpq “ p2q2.

As before, we let X denote the number of heads in 4 flips of a coin, but this time our strange
coin satisfies P pHq “ p and P pT q “ q. To compute the probability of getting “exactly two
heads” we just add up the probabilities from the corresponding outcomes:

P pX “ 2q “ P pHHTT q ` P pHTHT q ` P pHTTHq ` P pTHHT q ` P pTHTHq ` P pTTHHq

“ ppqq ` pqpq ` pqqp` qppq ` qpqp` qqpp

“ p2q2 ` p2q2 ` p2q2 ` p2q2 ` p2q2

“ 6p2q2.

At this point you should be willing to believe the following statement.

Binomial Probability (i.e., Coin Flipping)

Consider a strange coin with P pHq “ p and P pT q “ q where p ` q “ 1 and 0 ď p ď 1.
We flip the coin n times and let X denote the number of heads that we get. Assuming
that the outcomes of the coin flips are independent, the probability that we get exactly
k heads is

P pX “ kq “

ˆ

n

k

˙

pkqn´k,

where
`

n
k

˘

is the k-th entry in the n-th row of Pascal’s triangle.4 We say that this random
variable X has a binomial distribution.

For example, the following table shows the probability distribution for the random variable
X “ “number of heads in 4 flips of a coin” where p “ P p“heads”q satisfies 0 ď p ď 1. The
binomial theorem guarantees that the probabilities add to 1, as expected:

k 0 1 2 3 4

P pX “ kq p4 4p3q 6p2q2 4pq3 q4

4Later we will see that these “binomial coefficients” have a nice formula:
`

n
k

˘

“ n!{pk!pn´ kq!q.
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I want to note that this table includes the table for a fair coin as a special case. Indeed, if we
assume that P pHq “ P pT q then we must have p “ q “ 1{2 and the probability of getting 2
heads becomes

P pX “ 2q “ 6p2q2 “ 6

ˆ

1

2

˙2ˆ

1´
1

2

˙2

“ 6

ˆ

1

2

˙2ˆ1

2

˙2

“ 6

ˆ

1

2

˙4

“
6

24
“

6

16
,

just as before. To summarize, here is a table of the binomial distribution for n “ 4 and
various values of p. (P.S. There is a link on the course webpage to a “dynamic histogram” of
the binomial distribution where you can move sliders to see how the distribution changes.)

P pHq P pX “ 0q P pX “ 1q P pX “ 2q P pX “ 3q P pX “ 4q

p q4 4q3p 6q2p2 4qp3 p4

1{2 1{16 4{16 6{16 4{16 1{16

0 1 0 0 0 0

1 0 0 0 0 1

1{6 625{1296 500{1296 150{1296 20{1296 1{1296

For example, if P p“heads”q “ 1{6 then we expect to get “exactly 2 heads” in 150 out of every
1296 runs of the experiment. You can test this prediction as follows: Obtain a fair six-sided
die. Paint one side “blue” and the other five sides “red.” Now roll the die four times and count
the number of times you get “blue.” If you run the whole experiment 1296 times I predict
that the event “exactly two blue” will happen approximately 150 times. Try it!

We now have all the tools we need to analyze the Chevalier de Méré’s problem. The key
to the first experiment is to view one roll of a fair six-sided die as some kind of fancy coin
flip where “heads” means “we get a six” and “tails” means “we don’t get a six,” so that
P p“heads”q “ 1{6. The key to the second experiment is to view a roll of two fair six-sided
dice as an even fancier kind of coin flip where “heads” means “we get a double six” and “tails”
means “we don’t get a double six.” What is P p“heads”q in this case?

You will finish the analysis of the Chevalier’s problem on the first exercise set.

1.2 The Definition of Probability

Consider an experiment and let S denote the set of all possible outcomes. For example,
suppose there are three balls in an urn and that the balls are colored red, green and blue. If
we reach in and grab one ball then the set of all possible outcomes is

S “ tred, green, blueu.
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We call this set the sample space of the experiment. We will refer to any subset of possible
outcomes E Ď S as an event. Here are the possible events for our experiment:

tred, green, blueu

tred, greenu tred, blueu tgreen, blueu

tredu tgreenu tblueu

t u

We think of an event as a “kind of outcome that we care about.” For example, the event
E “ tred, blueu means that we reach into the urn and we pull out either the red ball or the
blue ball. The event E “ tgreenu means that we definitely get the green ball.

If we assume that each of the three possible outcomes is equally likely (maybe the three
balls have the same size and feel identical to the touch) then Pascal and Fermat tell us that
the probability of an event E is

P pEq “
#E

#S
“

#E

3
.

For example, in this case we will have

P ptred, blueuq “
2

3
and P ptgreenuq “

1

3
.

Warning: Outcomes vs. Events

The English words “outcome” and “event” have almost the same meaning. However, in
probability theory these words have very different meanings. Let me emphasize:

• An outcome x is an element of the sample space: x P S.

• An event E is a subset of the sample space: E Ď S.

That is, an event is any set of possible outcomes. For example, let E ““the second of
three coin flips shows heads.” This event is a set containing four outcomes:

E “ tHHH,HHT, THH, THT u.

We have discussed the situation when each outcome of an experiment is equally likely. But
what happens if this is not true? (For example, maybe one of the three balls in the urn
is bigger than the others, or maybe there are two red balls in the urn.) In that case the
Fermat-Pascal definition will make false predictions.

Another situation in which the Fermat-Pascal definition breaks down is when our experiment
has infinitely many possible outcomes. For example, suppose that we continue to flip a coin
until we see our first “heads,” then we stop. We can denote the sample space as

S “ tH,TH, TTH, TTTH, TTTTH, TTTTTH, . . .u.
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In this case it makes no sense to “divide by #S” because #S “ 8. Intuitively, we also see
that the outcome H is much more likely than the outcome TTTTH. You will investigate this
experiment on the homework.

Throughout the 1700s and 1800s these issues were dealt with on an ad hoc basis. In the
year 1900, one of the leading mathematicians in the world (Davd Hilbert) proposed a list of
outstanding problems that he would like to see solved in the twentieth century. One of his
problems was about probability.

Hilbert’s 6th Problem

To treat in the same manner, by means of axioms, those physical sciences in which already
today mathematics plays an important part; in the first rank are the theory of probabilities
and mechanics.

In other words, Hilbert was asking for a set of mathematical rules (axioms) that would turn
mechanics/physics and probability into fully rigorous subjects. It seems that Hilbert was way
too optimistic about mechanics, but a satisfying set of rules for probability was given in 1933
by a Russian mathematician named Andrey Kolmogorov.5 His rules became standard and we
still use them today. Let us now discuss

Kolmogorov’s three rules for probability.

Kolmogorov described probability in terms of “measure theory,” which itself is based on George
Boole’s “algebra of sets.”6 We have already used some set-theoretic terminology, but let me
repeat the important definitions.

Recall that a set S is any collection of things. An element of a set is any thing in the set. To
denote the fact that “x is a thing in the set S” we will write

x P S.

We also say that x is an element of the set S. For finite sets we use a notation like this:

S “ t1, 2, 4, appleu.

For infinite sets we can’t list all of the elements but we can sometimes give a rule to describe
the elements. For example, if we let Z denote the set of whole numbers (called “integers”)
then we can define the set of positive even numbers as follows:

tn P Z : n ą 0 and n is a multiple of 2u.

5Andrey Kolmogorov (1933), Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, Berlin. English
Translation: Foundations of the Theory of Probability.

6George Boole (1854), An Investigation of the Laws of Thought, Macmillan and Co., Cambridge.
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We read this as “the set of integers n such that n ą 0 and n is a multiple of 2.” We could also
express this set as

t2, 4, 6, 8, 10, 12, . . .u

if the pattern is clear.

If E1 and E2 are sets we will use the notation “E1 Ď E2” to indicate that E1 is a subset of E2.
This means that every element of E1 is also an element of E2. In the theory of probability
we assume that all sets under discussion are subsets of a given “universal set” S, which is
the sample space. In this context we will also refer to sets as events. There are three basic
“algebraic operations” on sets, which we can visualize using “Venn diagrams.”

We represent an event E Ď S as a blob inside a rectangle, which represents the sample space:

More specifically, we think of the points inside the blob as the elements of E. The points
outside the blob are the elements of the complementary set E1 Ď S:

If we have two sets E1, E2 Ď S whose relationship is not known then we will represent them
as two overlapping blobs:

12



We can think of the elements of E1 and E2 as the points inside each blob, which we emphasize
by shading each region:

We define the union E1YE2 and intersection E1XE2 as the sets of points inside the following
shaded regions:

George Boole interpreted the three basic set-theoretic operations ( 1 , Y , X) in terms of the
“logical connectives” (NOT, OR, AND). We can express this using set-builder notation:

E1 “ tx P S : NOT x P Eu,

E1 Y E2 “ tx P S : x P E1 OR x P E2u,

E1 X E2 “ tx P S : x P E1 AND x P E2u.
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If S represents the sample space of possible outcomes of a certain experiment, then the goal
of probability theory is to assign to each event E Ď S a real number P pEq, which measures
how likely this event is to occur.

Kolmogorov decided that the numbers P pEq must satisfy three rules. Any function P satis-
fying the three rules is called a probability measure.

Rule 1: Probability is Non-Negative

For all E Ď S we have P pEq ě 0. In words: The probability of any event is non-negative.

Rule 2: Probability is Additive

For all E1, E2 Ď S with E1 X E2 “ H we have P pE1 Y E2q “ P pE1q ` P pE2q.

In words: We say that two events E1, E2 are mutually exclusive if their intersection is
the empty set H, i.e., if they don’t share any elements in common. In this case, the
probability that “E1 or E2 happens” is the sum of the probabilities of E1 and E2.

By using induction7 we can extend Rule 2 to any sequence of mutually exclusive events.

Extension of Rule 2

Consider a sequence of a events E1, E2, . . . , En Ď S and suppose that any two of these
events are mutually exclusive. In other words, we have Ei X Ej “ H whenever i ‰ j.
Then by repeated application of Rule 2 we obtain

P pE1 Y E2 Y ¨ ¨ ¨ Y Enq “ P pE1q ` P pE2q ` ¨ ¨ ¨ ` P pEnq

P

˜

n
ď

i“1

Ei

¸

“

n
ÿ

i“1

P pEiq.

Any function satisfying Rules 1 and 2 is called a measure. It is not yet a probability measure,
but it already has some interesting properties.

Properties of Measures. Let P satisfy Rules 1 and 2. Then we have the following facts.

7Never mind the details.
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• If E1 Ď E2 then P pE1q ď P pE2q.

Proof. If E1 is contained inside E2 then we can decompose E2 as a disjoint union of
two sets as in the following picture:

Since the events E1 and E2 XE
1
1 are mutually exclusive (i.e., the corresponding shaded

regions don’t overlap), Rule 2 says that

P pE2q “ P pE1q ` P pE2 X E
1
1q

P pE2q ´ P pE1q “ P pE2 X E
1
1q.

But then Rule 1 says that P pE2 X E
1
1q ě 0 and we conclude that

P pE2 X E
1
1q ě 0

P pE2q ´ P pE1q ě 0

P pE2q ě P pE1q,

as desired.

• For any events E1, E2 Ď S (not necessarily mutually exclusive) we have

P pE1 Y E2q “ P pE1q ` P pE2q ´ P pE1 X E2q.

Proof. Define the sets A “ E1 X E12, B “ E1 X E2 and C “ E11 X E2. Then we can
decompose the union E1 Y E2 into three disjoint pieces as in the following diagram:
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Since the sets A,B,C are disjoint, Rule 2 tells us that

P pE1q “ P pAq ` P pBq

P pE2q “ P pBq ` P pCq

P pE1 Y E2q “ P pAq ` P pBq ` P pCq.

Then by adding the first two equations we obtain

P pE1q ` P pE2q “ rP pAq ` P pBqs ` rP pBq ` P pCqs

“ rP pAq ` P pBq ` P pCqs ` P pBq

“ P pE1 Y E2q ` P pBq

“ P pE1 Y E2q ` P pE1 X E2q.

Subtracting P pE1 X E2q from both sides gives the desired formula.

• The empty set has “measure zero”: P pHq “ 0.

Proof. Let E be any set whatsoever and observe that the following silly formulas are
true: E YH “ E and E XH “ H. Therefore, Rule 2 tells us that

P pEq “ P pEq ` P pHq

and subtracting the number P pEq from both sides gives

0 “ P pHq.

Example: Counting Measure

If the set S is finite then for any subset E Ď S we let #E denote the number of elements
in the set E. Observe that this counting function satisfies the two properties of a measure:

• For all E Ď S we have #E ě 0.

• For all E1, E2 Ď S with E1 X E2 “ H we have #pE1 Y E2q “ #E1 `#E2.

We call this the counting measure on the set S. It follows from the previous arguments
that the following three properties also hold:

• If E1 Ď E2 then #E1 ď #E2.

• For all E1, E2 Ď S we have #pE1 Y E2q “ #E1 `#E2 ´#pE1 X E2q.

• The empty set has no elements: #H “ 0. (Well, we knew that already.)

However, the counting measure on a finite set is not a “probability measure” because it does
not satisfy Kolmogorov’s third and final rule.
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Rule 3: Something Happens

We have P pSq “ 1. In words: The probability that “something happens” is 1.

By combining Rules 1 and 3 we obtain one final important fact:

• For all events E Ď S we have P pE1q “ 1´ P pEq.

Proof. By definition of the complement we have S “ E Y E1 and E X E1 “ H.
Then by Rule 2 we have P pSq “ P pE Y E1q “ P pEq ` P pE1q and by Rule 3 we have
1 “ P pSq “ P pEq ` P pE1q as desired.

Any function satisfying Rules 1, 2 and 3 is called a probability measure.

Example: Fermat-Pascal Definition of Probability

Let S be a finite set. We saw above that the counting measure #E satisfies Rules 1 and
2. However, it probably does not satisfy Rule 3. (The counting measure satisfies Rule
3 only if our experiment has a single possible outcome, in which case our experiment is
very boring.)

We can fix the situation by defining the relative counting measure:

P pEq “
#E

#S
.

Note that this function still satisfies Rules 1 and 2 because

• For all E Ď S we have #E ě 0 and #S ě 1, hence P pEq “ #E{#S ě 0.

• For all E1, E2 Ď S with E1XE2 ‰ H we have #pE1YE2q “ #E1`#E2 and hence

P pE1 Y E2q “
#pE1 Y E2q

#S
“

#E1 `#E2

#S
“

#E1

#S
`

#E2

#S
“ P pE1q ` P pE2q.

But now it also satisfies Rule 3 because

P pSq “
#S

#S
“ 1.

Thus we have verified that the Fermat-Pascal definition of probability is a specific example of
a “probability measure.”8 That’s reassuring.

8Later we will call it the uniform probability measure on the set S.
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1.3 The Basics of Probability

In this section we will discuss the basic tools for working with probability measures. But first
let me give you the official definition of “independence.”

Independent Events

Let P be a probability measure on a sample space S and consider any two events E1, E2 Ď

S. We say that these events are independent if the probability of the intersection is the
product of the probabilities:

P pE1 X E2q “ P pE1qP pE2q.

Here’s an example of two events that are not independent: If we flip a fair coin once then
the sample space is S “ tH,T u. Consider the event E “ twe get headsu “ tHu and its
complement E1 “ twe don’t get headsu “ tT u. The intersection of these events is empty, so
that

P pwe get heads and tailsq “ P pE X E1q “ P pHq “ 0.

On the other hand, since the coin is fair we know that P pEq “ P pE1q “ 1{2 and hence
P pEqP pE1q “ 1{4. Since

1{4 “ P pEqP pE1q ‰ P pE X E1q “ 0

we conclude that the events E and E1 are not independent. In words:

If the coin turns up “heads,” then the probability of “tails” changes from 1{2 to 0.

And here’s an example of two events that are independent: If we flip a fair coin twice then
the sample space is

S “ tHH,HT, TH, TT u.

Consider the events

H1 “ twe get heads on the first flipu “ tHH,HT u,

H2 “ twe get heads on the second flipu “ tHH,THu.

Since all outcomes are equally likely (the coin is fair) we have P pH1q “ #H1{#S “ 2{4 “ 1{2
and P pH2q “ #H2{#S “ 2{4 “ 1{2, and hence P pH1qP pH2q “ 1{4. On the other hand, since
H1 XH2 “ tHHu we have

P pwe get heads on the first flip and on the second flipq

“ P pH1 XH2q

“ #pH1 XH2q{#S “ 1{4.

Since P pH1 XH2q “ P pH1qP pH2q we conclude that these events are independent. In words:
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If the coin turns up “heads” on the first flip, then the probability of getting “heads”
on the second flip stays the same.

The concept of “independence” is closely related to the concept of “conditional probability.”
We will discuss this below in Section 1.7.

Now I will show you the basic useful tools for analyzing probability measures. Some of them
have fancy names, but the ideas are not fancy.

Law of Total Probability

Let P be a probability measure on a sample space S and consider any two events A,B P S.
Then we can use B as a knife to cut the probability of A into two pieces:

P pAq “ P pAXBq ` P pAXB1q.

Proof. Consider the following diagram:

Since the events AXB and AXB1 are mutually exclusive (they have no overlap) we can use
Rule 2 to conclude that

A “ pAXBq Y pAXB1q

P pAq “ P pAXBq ` P pAXB1q.

Example. Let pP, Sq be a probability space9 and let A,B Ď S be any events satisfying

P pAq “ 0.4, P pBq “ 0.5 and P pAYBq “ 0.6.

9That is, a probability measure P on a sample space S.
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Use this information to compute P pAXB1q.

Solution: I want to use the formula P pAq “ P pAXBq ` P pAXB1q but first I need to know
P pAXBq. To do this I will use the generalization of Rule 2 for events that are not mutually
exclusive:

P pAYBq “ P pAq ` P pBq ´ P pAXBq

0.6 “ 0.4` 0.5´ P pAXBq

P pAXBq “ 0.4` 0.5´ 0.6 “ 0.3.

Then we have

P pAq “ P pAXBq ` P pAXB1q

0.4 “ 0.3` P pAXB1q

0.1 “ P pAXB1q.

Next I’ll present a couple rules of “Boolean algebra,” i.e., rules that describe the relationships
between the “Boolean operations” of complement ( 1 ) , union (Y) and intersection (X). These
don’t necessarily have anything to do with probability but we will apply them to probability.

The first rule describes how unions and intersections interact.

Distributive Laws

For any three sets A,B,C we have

AX pB Y Cq “ pAXBq Y pAX Cq,

AY pB X Cq “ pAYBq X pAY Cq.

In words, we say that each of the operations X,Y “distributes” over the other.

The easy way to remember these rules is to think of multiplication distributing over addition:

aˆ pb` cq “ aˆ b` aˆ c.

However, we shouldn’t take this analogy too seriously because we all know that addition does
not distribute over multiplication:

a` pbˆ cq ‰ pa` bq ˆ pa` cq.

Thus, there is a symmetry between the set operations Y,X that is not present between
the number operations `,ˆ. Here is a verification of the first distributive law using Venn
diagrams. You should verify the other law for yourself.
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Of course, the union here is not disjoint (another term for “mutually exclusive”). Thus to
compute the probability of A X pB Y Cq we will need to subtract the probability of the
intersection of AXB an AX C, which is

pAXBq X pB X Cq “ AXB X C.

Then we have

P pAX pB Y Cqq “ P prpAXBq Y pAX Cqsq

“ P pAXBq ` P pAX Cq ´ P ppAXBq X pAX Cqq

“ P pAXBq ` P pAX Cq ´ P pAXB X Cq.

The next rule10 describes how complementation interacts with union and intersection.

De Morgan’s Laws

Let S be a set. Then for any two subsets A,B Ď S we have

pAYBq1 “ A1 XB1,

pAXBq1 “ A1 YB1.

In words: The operator ( 1 ) converts Y into X, and vice versa.

Here’s a proof of the first law using Venn diagrams:

10Augustus de Morgan (1806–1871) was a British mathematician and a contemporary of George Boole.
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You will give a similar proof for the second law on the homework. However, it’s not really
necessary because the second law follows logically from the first. Indeed, for any two subets
A,B Ď S we can apply the first de Morgan’s law to the sets A1 and B1 to obtain

pA1 YB1q “ pA1q1 X pB1q1.

Since the complement of a complement is the original set, this simplifies to

pA1 YB1q1 “ AXB.

Finally, we take the complement of both sides to obtain

ppA1 YB1q1q1 “ pAXBq1

A1 YB1 “ pAXBq1,

which is the second de Morgan’s law.

Here’s a more challenging example illustrating these ideas.

Example. Let pP, Sq be a probability space and let A,B Ď S be any events satisfying

P pAYBq “ 0.76 and P pAYB1q “ 0.87.

Use this information to compute P pAq.

First Solution: If you draw the Venn diagrams for AYB and AYB1, you might notice that

pAYBq Y pAYB1q “ S and pAYBq X pAYB1q “ A,

which implies that

P pSq “ P pAYBq ` P pAYB1q ´ P pAq

P pAq “ P pAYBq ` P pAYB1q ´ P pSq

P pAq “ 0.76` 0.87´ 1 “ 0.63.
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Second Solution: If you don’t notice this trick, you will need to apply a more brute-force
technique. First we can apply de Morgan’s law to obtain

P ppAYBq1q “ 1´ P pAYBq

P pA1 XB1q “ 1´ 0.76 “ 0.24

and

P ppAYB1q1q “ 1´ P pAYB1q

P pA1 XBq “ 1´ 0.87 “ 0.13.

Then we can apply the law of total probability to obtain

P pA1q “ P pA1 XBq ` P pA1 XB1q

“ 0.13` 0.24 “ 0.37,

and hence P pAq “ 1´ P pA1q “ 1´ 0.37 “ 0.63. There are many ways to do this problem.

The last tool for today allows us to compute the probability of a union when we only know
the probabilities of the intersections.

Principle of Inclusion-Exclusion

Let pP, Sq be a probability space and consider any events A,B Ď S. We know that

P pAYBq “ P pAq ` P pBq ´ P pAXBq.

More generally, for any three events A,B,C Ď S we have

P pAYB Y Cq “ P pAq ` P pBq ` P pCq

´ P pAXBq ´ P pAX Cq ´ P pB X Cq

` P pAXB X Cq.

And in the most general case we have

P punion of n eventsq “
ÿ

P peventsq

´
ÿ

P pdouble intersectionsq

`
ÿ

P ptriple intersectionsq

´
ÿ

P pquadruple intersectionsq

...

˘ P pintersection of all n eventsq.
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In words: To compute the probability of a union we first add the probabilities of the
individual events, then we subtract the probabilities of the double intersections, then we
add the probabilities of the triple intersections, etc.

Let’s prove the case of three events A,B,C Ď S. If the events are mutually exclusive (that is,
if AXB “ AX C “ B X C “ H) then Rule 2 tells that

P pAYB Y Cq “ P pAq ` P pBq ` P pCq.

However, if the events are not mutually exclusive then we must subtract something:

P pAYB Y Cq “ P pAq ` P pBq ` P pCq´ ?

What do we need to subtract? A Venn diagram can help us understand this:

The numbers indicate how many times each region has been counted in the sum P pAq `
P pBq ` P pCq. Note that the double overlaps were counted twice and the triple overlap was
counted three times. To fix this we will first subtract the double overlaps to obtain

P pAq ` P pBq ` P pCq ´ P pAXBq ´ P pAX Cq ´ P pB X Cq

as in the following diagram:
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But this still isn’t right because now we have counted the triple overlap zero times. We
obtain the correct formula by adding back one copy of AXB X C to get

P pAYB Y Cq “ P pAq ` P pBq ` P pCq

´ P pAXBq ´ P pAX Cq ´ P pB X Cq

` P pAXB X Cq,

as desired.

Here’s an example.

Example. Roll a fair six-sided die three times and consider the following events:

A “ twe get 1 or 2 on the first rollu,

B “ twe get 2 or 3 on the second rollu,

C “ twe get 3 or 4 on the third rollu.

Compute the probability of the union P pAYB Y Cq.

First Solution. Since the die is fair we have P pAq “ P pBq “ P pCq “ 2{6 “ 1{3. Further-
more, since the die has “no memory” these three events must be independent, which implies
that

P pAXBq “ P pAqP pBq “ 1{9,

P pAX Cq “ P pAqP pCq “ 1{9,

P pB X Cq “ P pBqP pCq “ 1{9,

P pAXB X Cq “ P pAqP pBqP pCq “ 1{27.

Finally, using the principle of inclusion-exclusion gives

P pAYB Y Cq “ P pAq ` P pBq ` P pCq

´ P pAXBq ´ P pAX Cq ´ P pB X Cq

` P pAXB X Cq,

“ 3 ¨
1

3
´ 3 ¨

1

9
`

1

27
“

27´ 9` 1

27
“

19

27
.

Second Solution. We can view the six-sided die as a “strange coin” where the definition of
“heads” changes from flip to flip. On the first flip “heads” means “1 or 2,” on the second flip
it means “2 or 3” and on the third flip it means “3 or 4.” It doesn’t really matter because the
flips are independent and the probability of “heads” is always 1{3. Suppose we flip the “coin”
three times and let X be the number of heads we get. Then we have

P pwe get heads on the first flip or the second flip or the third flipq
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“ P pwe get heads at least onceq

“ P pX ě 1q

“ 1´ P pX “ 0q

“ 1´ P pTTT q

“ 1´ P pT qP pT qP pT q

“ 1´

ˆ

2

3

˙3

“
19

27
.

In probability there are often many ways to solve a problem. Sometimes there is a trick that
allows us to solve the problem quickly, as in the second solution above. However, tricks are
hard to come by so we often have to fall back on a slow and steady solution, such as the first
solution above.

Exercises 1

1.1. Suppose that a fair coin is flipped 6 times in sequence and let X be the number of
“heads” that show up. Draw Pascal’s triangle down to the sixth row (recall that the zeroth
row consists of a single 1) and use your table to compute the probabilities P pX “ kq for
k “ 0, 1, 2, 3, 4, 5, 6.

1.2. Suppose that a fair coin is flipped 4 times in sequence.

(a) List all 16 outcomes in the sample space S.

(b) List the outcomes in each of the following events:

A “ tat least 3 headsu,

B “ tat most 2 headsu,

C “ theads on the 2nd flipu,

D “ texactly 2 tailsu.

(c) Assuming that all outcomes are equally likely, use the formula P pEq “ #E{#S to
compute the following probabilities:

P pAYBq, P pAXBq, P pCq, P pDq, P pC XDq.

1.3. Draw Venn diagrams to verify de Morgan’s laws: For all events E,F Ď S we have

(a) pE Y F q1 “ E1 X F 1,

(b) pE X F q1 “ E1 Y F 1.
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1.? Use your intuition to decide which of the following pairs of events are independent.

(a) A pair of complementary events E and E1.

(b) Flip a coin twice. Let

A “ theads on the first flipu

B “ ttails on the second flipu.

(c) Roll a six-sided die three times. Let

A “ t2 or 3 on the first rollu

B “ t1, 3 or 5 on the third rollu.

(d) An urn contains three balls, colored red, green and blue. Grab two balls and let

A “ tthe first ball is greenu

B “ tthe second ball is redu.

1.4. Suppose that a fair coin is flipped until heads appears. The sample space is

S “ tH,TH, TTH, TTTH, TTTTH, . . .u.

However these outcomes are not equally likely.

(a) Let Ek be the event tfirst H occurs on the kth flipu. Explain why P pEkq “ 1{2k. [Hint:
The event Ek consists of exactly one outcome. What is the probability of this outcome?
You may assume that the coin flips are independent.]

(b) Recall the geometric series from Calculus:

1` q ` q2 ` ¨ ¨ ¨ “
1

1´ q
for all numbers |q| ă 1.

Use this fact to verify that the sum of all the probabilities equals 1:

8
ÿ

k“1

P pEkq “ 1.

1.5. Suppose that P pAq “ 0.5, P pBq “ 0.6 and P pA X Bq “ 0.3. Use this information to
compute the following probabilities. A Venn diagram may be helpful.

(a) P pAYBq,

(b) P pAXB1q,
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(c) P pA1 YB1q.

1.6. Let X be a real number that is “selected randomly” from r0, 1s, i.e., the closed interval
from zero to one. Use your intuition to assign values to the following probabilities:

(a) P pX “ 1{2q,

(b) P p0 ă X ă 1{2q,

(c) P p0 ď X ď 1{2q,

(d) P p1{3 ă X ď 3{4q,

(e) P p´1 ă X ă 3{4q.

1.7. Consider a strange coin with P pHq “ p and P pT q “ q “ 1 ´ p. Suppose that you flip
the coin n times and let X be the number of heads that you get. Find a formula for the
probability P pX ě 1q. [Hint: Observe that P pX ě 1q ` P pX “ 0q “ 1. Maybe it’s easier to
find a formula for P pX “ 0q.]

1.8. Suppose that you roll a pair of fair six-sided dice.

(a) Write down all elements of the sample space S. What is #S? Are the outcomes equally
likely? [Hopefully, yes.]

(b) Compute the probability of getting a “double six.” [Hint: Let E Ď S be the subset of
outcomes that correspond to getting a “double six.” Assuming that the outcomes of your
sample space are equally likely, you can use the formula P pEq “ #E{#S.]

1.9. Analyze the Chevalier de Méré’s two experiments:

(a) Roll a fair six-sided die 4 times and letX be the number of “sixes” that you get. Compute
P pX ě 1q. [Hint: You can think of a die roll as a “strange coin flip,” where H ““six”
and T ““not six.” Use Problem 7.]

(b) Roll a pair of fair six-sided dice 24 times and let Y be the number of “double sixes” that
you get. Compute P pY ě 1q. [Hint: You can think of rolling two dice as a “very strange
coin flip,” where H ““double six” and T ““not double six.” Use Problems 7 and 8.]

1.10. Roll a fair six-sided die three times in sequence, and consider the events

E1 “ tyou get 1 or 2 or 3 on the first rollu,

E2 “ tyou get 1 or 3 or 5 on the second rollu,

E3 “ tyou get 2 or 4 or 6 on the third rollu.

You can assume that P pE1q “ P pE2q “ P pE3q “ 1{2.
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(a) Explain why P pE1XE2q “ P pE1XE3q “ P pE2XE3q “ 1{4 and P pE1XE2XE3q “ 1{8.

(b) Use this information to compute P pE1 Y E2 Y E3q.

1.4 The Binomial Theorem

In the first lecture I told you that coin flipping is related to Pascal’s Triangle. Now I will
explain why. First, here is the official definition of Pascal’s Triangle.

Definition of Pascal’s Triangle

Let
`

n
k

˘

denote the entry in the nth row and the kth diagonal of Pascal’s Triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

“

`

0
0

˘

`

1
0

˘ `

1
1

˘

`

2
0

˘ `

2
1

˘ `

2
2

˘

`

3
0

˘ `

3
1

˘ `

3
2

˘ `

3
3

˘

`

4
0

˘ `

4
1

˘ `

4
2

˘ `

4
3

˘ `

4
4

˘

To be precise, these numbers are defined by the boundary conditions

ˆ

n

k

˙

“ 1 when k “ 0 or k “ n

and the recurrence relation
ˆ

n

k

˙

“

ˆ

n´ 1

k ´ 1

˙

`

ˆ

n´ 1

k

˙

when 0 ă k ă n.

Now consider a coin with

0 ď P pHq “ p ď 1 and 0 ď P pT q “ q “ 1´ p ď 1

and suppose that we flip the coin n times in sequence. If X is the number of heads we want
to compute the probability P pX “ kq for each value of k P t0, 1, 2, . . . , nu. This problem is
closely related to expanding the binomial pp` qqn for various powers n:

1 “ 10 “ pp` qq0 “ 1,

1 “ 11 “ pp` qq1 “ p` q,

1 “ 12 “ pp` qq2 “ p2 ` 2pq ` q2,

1 “ 13 “ pp` qq3 “ p3 ` 3p2q ` 3pq2 ` q3,
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1 “ 14 “ pp` qq4 “ p4 ` 4p3q ` 6p2q2 ` 4pq3 ` q4.

In order to make better sense of these formulas, let us temporarily assume that pq ‰ qp. Then
instead of pp` qq2 “ p2 ` 2pq ` q2 we will write

pp` qq2 “ pp` qqpp` qq

“ ppp` qq ` qpp` qq

“ pp` pq ` qp` qq

“ pppq ` ppq ` qpq ` pqqq

and instead of pp` qq3 “ p3 ` 3p2q ` 3pq2 ` q3 we will write

pp` qq3 “ pp` qqpp` qq2

“ pp` qqppp` pq ` qp` qqq

“ pppp` pq ` qp` qqq ` qppp` pq ` qp` qqq

“ pppp` ppq ` pqp` pqqq ` pqpp` qpq ` qqp` qqqq

“ ppppq ` pppq ` pqp` qppq ` ppqq ` qpq ` qqpq ` pqqqq.

In general we make the following observation:

1 “ pp` qqn “
ÿ

tall words of length n using the letters p and qu.

In fact, each word of p’s and q’s tells us the probability of getting a specific sequence of coin
flips. For example, if n “ 4 then since the coin flips are independent the probability of
getting the sequence HTHT is

P pHTHT q “ P pHqP pT qP pHqP pT q “ pqpq “ p2q2.

More generally, to compute the probability of the event “X “ 2”=“we get 2 heads” we should
add the probabilities of the corresponding sequences:

P pX “ 2q “ P pHHTT q ` P pHTHT q ` P pHTTHq ` P pTHHT q ` P pTHTHq ` P pTTHHq

“ ppqq ` pqpq ` pqqp` qppq ` qpqp` qqpp

“ p2q2 ` p2q2 ` p2q2 ` p2q2 ` p2q2

“ 6p2q2.

In summary, we make the following observation:

P pX “ kq “ #(words made from k copies of H and n´ k copies of T ) ¨ pkqn´k.

It only remains to show that these numbers are related to Pascal’s Triangle.
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Counting Binary Strings (i.e., Words Made From Two Symbols)

A binary string is a word containing two possible symbols, say H and T .11 Let nBk denote
the number of binary strings of length n that contain k copies of H, and hence n ´ k
copies of T . For example, we have

4B2 “ #twords made from 2 copies of H and 2 copies of T u

“ #tHHTT,HTHT,HTTH, THHT, THTH, TTHHu “ 6.

I claim that these numbers are the same as the entries of Pascal’s Triangle:

nBk “

ˆ

n

k

˙

.

Proof. It is enough to show that these numbers satisfy the same boundary conditions and
recurrence relation as the entries of Pascal’s Triangle. To be specific, we need to show that

• nBk “ 1 when k “ 0 or k “ n,

• nBk “ n´1Bk´1 ` n´1Bk when 0 ă k ă n.

To verify the boundary conditions we observe that nW0 “ 1 because there is exactly one word
of length n containing zero copies of H (namely, the word TT ¨ ¨ ¨T ) and we observe that

nWn “ 1 because there is exactly one word of length n containing n copies of H (namely, the
word HH ¨ ¨ ¨H).

To verify the recurrence relation we will use a clever trick: We will divide the set of strings
into two groups, depending on whether the first letter is H or T . For example, let E be the set
of strings made from 2 copies of H and 2 copies of T . Then the recurrence 4B2 “ 3B1 ` 3B2

is illustrated by the following computation:

E “ tHHTT,HTHT,HTTH, THHT, THTH, TTHHu

E “ tHHTT,HTHT,HTTHu Y tTHHT, THTH, TTHHu

#E “ #t��HHTT,��HTHT,��HTTHu `#t�THHT,�THTH,�TTHHu

#E “ #tHTT, THT, TTHu `#tHHT,HTH, THHu

4B2 “ 3B1 ` 3B4

6 “ 3` 3.

In general, let E be the set of strings made from k copies of H and n´ k copies of T , so that
#E “ nBk. Then n´1Bk´1 is equal to the number of strings in E that start with H, since
after deleting the leftmost H we are left with a string of length n´ 1 containing k ´ 1 copies

11The symbols don’t matter. It is common to use 0 and 1 instead of H and T .
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of H. Similarly, n´1Bk is equal to the number of words in E that start with T , since after
deleting the leftmost T we are left with a string of length n´ 1 containing k copies of H. ˝

This completes our proof that Pascal’s Triangle is related to Binomial Probability. We have
seen that this result is very useful for computing probabilities related to a small number of
coin flips. But what about a large number of coin flips? For example, suppose that we flip
a coin 100 times. Then the probability of getting exactly 12 heads is

P p12 heads in 100 coin flipsq “

ˆ

100

12

˙

p12q88,

where
`

100
12

˘

is the entry in the 100th row and 12th diagonal of Pascal’s Triangle. But who
wants to draw 100 rows of Pascal’s Triangle? Actually it is enough to compute the entries in
the rectangle above

`

100
12

˘

, but this still involves over 1000 computations!

Luckily there is a formula that we can use the get the answer directly. Here it is:

ˆ

100

12

˙

“
100

12
¨

99

11
¨

98

10
¨

97

9
¨

96

8
¨

95

7
¨

94

6
¨

93

5
¨

92

4
¨

91

3
¨

90

2
¨

89

1
“ 1, 050, 421, 051, 106, 700.
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That’s still pretty bad but at least we got the answer with fewer than 1000 computations.
Here is the general statement.

Formula for Binomial Coefficients

For 0 ă k ă n the entry in the nth row and kth diagonal of Pascal’s triangle satisfies

ˆ

n

k

˙

“
n

k
¨
pn´ 1q

pk ´ 1q
¨
pn´ 2q

pk ´ 2q
¨ ¨ ¨
pn´ k ` 3q

3
¨
pn´ k ` 2q

2
¨
pn´ k ` 1q

1
.

We can simplify this formula by defining the factorial notation:

n! “

#

1 when n “ 0,

npn´ 1qpn´ 2q ¨ ¨ ¨ 3 ¨ 2 ¨ 1 when n ě 1.

The definition 0! “ 1 might seem silly to you, but read on. We observe that the numerator
of the previous formula can be written in terms of factorials:

npn´1q ¨ ¨ ¨ pn´k`1q “
npn´ 1q ¨ ¨ ¨ pn´ k ` 1q

((((
((((

(((
(((

pn´ kqpn´ k ´ 1q ¨ ¨ ¨ 3 ¨ 2 ¨ 1

(((
((((

(((
((((

pn´ kqpn´ k ´ 1q ¨ ¨ ¨ 3 ¨ 2 ¨ 1
“

n!

pn´ kq!

Thus the whole formula can be rewritten as
ˆ

n

k

˙

“
npn´ 1q ¨ ¨ ¨ pn´ k ` 1q

k!
“
n!{pn´ kq!

k!
“

n!

k!pn´ kq!
.

Conveniently, this formula now gives the correct answer
`

n
k

˘

“ 1 when k “ 0 or k “ n.
That’s the only reason that we define 0! “ 1 (i.e., for convenience).

You will prove this formula on the homework by observing that it satisfies the same boundary
conditions and recurrence relation as Pascal’s Triangle. Later we will have a more conceptual
proof involving “permutations” and “combinations.” To end this lecture let me repeat the
theorem of Binomial Probability using the new formula.

The Binomial Theorem

Consider a coin with P pHq “ p and P pT q “ q. Flip the coin n times and let X denote
the number of heads that show up. Then we have

P pX “ kq “
n!

k!pn´ kq!
pkqn´k.
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The so-called Binomial Theorem guarantees that these probabilities add to 1:

n
ÿ

k“0

P pX “ kq “
n
ÿ

k“0

n!

k!pn´ kq!
pkqn´k “ pp` qqn “ 1n “ 1.

Next time we will generalize these ideas to a “coin with more than two sides,” also called a
“die.”

1.5 The Multinomial Theorem

Binomial Probability describes any experiment with the following properties:

• The experiment has two possible outcomes.

• Any two runs of the experiment are independent.

The technical name for this experiment is a Bernoulli trial, but I prefer to call it a coin flip.

What happens when there are more than two possible outcomes? (That is, instead of “flipping
a coin,” suppose that we “roll a die.”) Let me tell you the answer right up front.

Multinomial Probability (i.e., Dice Rolling)

Consider an s-sided die where P pside iq “ pi ě 0. In particular, we must have

p1 ` p2 ` ¨ ¨ ¨ ` ps “ 1.

Now suppose you roll the die n times and let Xi be the number of times that side i shows
up. Then the probability that side 1 shows up k1 times and side 2 shows up k2 times
and ¨ ¨ ¨ and side s shows up ks times is

P pX1 “ k1, X2 “ k2, . . . , Xs “ ksq “
n!

k1!k2! ¨ ¨ ¨ ks!
pk11 p

k2
2 ¨ ¨ ¨ p

k2
s .

To check that this makes sense let’s examine the case of an s “ 2 sided die (i.e., a coin). Let’s
say that “heads”=“side 1” and “tails”=“side 2,” so that P pHq “ p1 and P pT q “ p2. Roll the
die n times and let

X1 “ #times side 1 (heads) shows up,

X2 “ #times side 2 (tails) shows up.
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If X1 “ k1 and X2 “ k2 then of course we must have k1`k2 “ n. The formula for multinomial
probability tells us that the probability of getting k1 heads and k2 tails is

P pX1 “ k1, X2 “ k2q “
n!

k1!k2!
pk11 p

k2
2 “

n!

k1!pn´ k1q!
pk11 p

n´k2
2 ,

which agrees with our previous formula for binomial probability. So we see that the formula
is true, at least when s “ 2.

Basic Example. Here is an example with s “ 3. Suppose that we roll a “fair 3-sided die,”
whose sides are labeled A,B,C. If we roll the die 5 times, what is the probability of getting
A twice, B twice and C once?

Solution. Define P pAq “ p1, P pBq “ p2 and P pCq “ p3. Since the die is fair we must have

p1 “ p2 “ p3 “
1

3
.

Now define the random variables

X1 “ #times A shows up,

X2 “ #times B shows up,

X3 “ #times C shows up.

We are looking for the probability that X1 “ 2, X2 “ 2 and X3 “ 1, and according to the
multinomial probability formula this is

P pX1 “ 2, X2 “ 2, X3 “ 1q “
5!

2!2!1!
p21p

2
2p

1
3

“
5 ¨ 4 ¨ 3 ¨ 2 ¨ 1

2 ¨ 1 ¨ 2 ¨ 1 ¨ 1

ˆ

1

3

˙2ˆ1

3

˙2ˆ1

3

˙1

“ 30

ˆ

1

3

˙5

“
30

35
“ 12.35%.

Harder Example. Consider a fair six-sided die with sides labeled A,A,A,B,B,C. If we roll
the die 5 times, what is the probability of getting A twice, B twice and C once?

Solution. What makes this example harder? Instead of treating this as a normal 6-sided die
we will treat it as a “strange 3-sided die”12 with the probabilities

p1 “ P pAq “ 3{6 “ 1{2

p2 “ P pBq “ 2{6 “ 1{3

12We are familiar with this trick from our experience with “strange coins.”
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p3 “ P pCq “ 1{6.

The rest of the example proceeds as before. That is, we define the random variables

X1 “ #times A shows up,

X2 “ #times B shows up,

X3 “ #times C shows up.

and then we compute the probability:

P pX1 “ 2, X2 “ 2, X3 “ 1q “
5!

2!2!1!
p21p

2
2p

1
3

“
5 ¨ 4 ¨ 3 ¨ 2 ¨ 1

2 ¨ 1 ¨ 2 ¨ 1 ¨ 1

ˆ

1

2

˙2ˆ1

3

˙2ˆ1

6

˙1

“ 30 ¨
1

223261
“ 13.89%.

What is the purpose of the number 30 “ 5!{p2!2!1!q in these calculations? I claim that this is
the number of words that can be formed from the letters A,A,B,B,C. That is, I claim that

30 “ #tAABBC,AABCB,AACBB, . . .u.

Instead of writing down all of the words, we can count them with the same trick we used
before. First we note that there are 5! “ 120 words that can be made from the labeled
symbols A1, A2, B1, B2, C1. On the other hand, if we are given an unlabeled word such as
AABCB, then there are 2!2!1! “ 4 ways to add labels:

Then we conclude that

#plabeled wordsq “ #punlabeled wordsq ˆ#pways to add labelsq

5! “ #punlabeled wordsq ˆ 2!2!1!

#punlabeled wordsq “
5!

2!2!1!
“ 30,

as desired. Here’s the general story.
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Counting Words with Repeated Letters

The number of words that can be made from k1 copies of the letter p1, k2 copies of the
letter p2, . . . and ks copies of the letter ps is

pk1 ` k2 ` k3 ` ¨ ¨ ¨ ` ksq!

k1!k2!k3! ¨ ¨ ¨ ks!
.

Example. How many words can be formed using all of the letters

m, i, s, s, i, s, s, i, p, p, i ?

Solution. We have k1 “ 1 copies of m, k2 “ 4 copies of i, k3 “ 4 copies of k4 “ 2 copies of
p. So the number of words is

p1` 4` 4` 2q!

1!4!4!2!
“

11!

1!4!4!2!
“ 34, 650.

Another way to phrase this example is by treating the symbols m, i, s, p as variables and then
raising the expression m ` i ` s ` p to the power of 11.13 We observe that the expression
mississippi is just one of the terms in the expansion:

pm` i` s` pq11 “ ¨ ¨ ¨ `mississippi` ¨ ¨ ¨ .

However, since these variables represent numbers it is more common to write mississippi “
mi4s4p2. After grouping all of the terms with the same number of each factor we obtain

pm` i` s` pq11 “ ¨ ¨ ¨ `
11!

1!4!4!2!
mi4s4p2 ` ¨ ¨ ¨ .

Here is the general sitaution.

The Multinomial Theorem

Let p1, p2, . . . , ps be any s numbers. Then for any integer n ě 0 we have

pp1 ` p2 ` ¨ ¨ ¨ ` psq
n “

ÿ n!

k1!k2! ¨ ¨ ¨ ks!
pk11 p

k2
2 ¨ ¨ ¨ p

ks
s ,

where we sum over all integers k1, k2, . . . , ks ě 0 such that k1 ` k2 ` ¨ ¨ ¨ ks “ n. We will
use the special notation

ˆ

n

k1, k2, . . . , ks

˙

“
n!

k1!k2! ¨ ¨ ¨ ks!

13Much like Nigel Tufnel’s amplifier.
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for the coefficients, and we will call them multinomial coefficients. You should check that
this notation relates to our previous notation for binomial coefficients as follows:

ˆ

n

k

˙

“

ˆ

n

k, n´ k

˙

“

ˆ

n

n´ k

˙

.

The multinomial theorem explains why the multinomial probabilies add to 1. Indeed, suppose
that we roll an s-sided die n times, with P pside iq “ pi. In particular this implies that

p1 ` p2 ` ¨ ¨ ¨ ` ps “ 1.

If Xi is the number of times that side i shows up then the total probability of all outcomes is
ÿ

P pX1 “ k1, X2 “ k2, . . . , Xs “ ksq

“
ÿ

ˆ

n

k1, k2, . . . , ks

˙

pk11 p
k2
2 ¨ ¨ ¨ p

ks
s

“ pp1 ` p2 ` ¨ ¨ ¨ ` psq
n

“ 1n

“ 1,

as desired.

Today we discussed an experiment with multiple possible outcomes, in which any two runs
of the experiment are independent. I like to call this experiment rolling a die. Next time we
will consider the case when successive runs of the experiment are not independent. This
problem is much harder, but certain special cases can be solved. For example, we will analyze
the experiment of drawing colored balls from an urn.

1.6 Principles of Counting

We already used some counting principles in our discussion of binomial and multinomial
probability. In this section we’ll be a bit more systematic. Here is the principle on which
everything else is based.

The Multiplication Principle

When a sequence of choices is made, the number of possibilities multiplies.

For example, suppose we want to put the three symbols a, b, c in order. We can use the
following process:
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• First choose the leftmost symbol in 3 ways.

• Now there are 2 remaining choices for the middle symbol.

• Finally, there is 1 remaining choice for the rightmost symbol.

The multiplication principle tells us that there are

3
loomoon

1st choice

ˆ 2
loomoon

2nd choice

ˆ 1
loomoon

3rd choice

“ 3! “ 6 choices in total.

We can also express this process visually as a branching diagram (or a “tree”):

H

c

cb cba
a

b

ca cab
b

a

c
b

bc bca
a

c

ba bac
c

a
b

a

ac acb
b

c

ab abc
c

b

a

The process of putting distinct symbols in a line is called permutation.

Permutations (i.e., Putting Things in Order)

Consider a set of n distinct symbols and let nPk be the number of ways to choose k of
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them and put them in a line. Using the multiplication principle gives

nPk “ n
loomoon

1st choice

ˆ n´ 1
loomoon

2nd choice

ˆ ¨ ¨ ¨ ˆ n´ pk ´ 1q
looooomooooon

kth choice

“ npn´ 1q ¨ ¨ ¨ pn´ k ` 1q.

Observe that we have nPn “ n!, nP0 “ 1 and nPk “ 0 for k ą n, which makes sense.
(There is no way choose more than n symbols.) When 0 ď k ď n it is convenient to
simplify this formula by using the factorial notation:

nPk “ npn´ 1q ¨ ¨ ¨ pn´ k ` 1q

“ npn´ 1q ¨ ¨ ¨ pn´ k ` 1q ¨
pn´ kqpn´ k ´ 1q ¨ ¨ ¨ 1

pn´ kqpn´ k ´ 1q ¨ ¨ ¨ 1

“
npn´ 1q ¨ ¨ ¨ 1

pn´ kqpn´ k ´ 1q ¨ ¨ ¨ 1

“
n!

pn´ kq!
.

Sometimes we want to allow the repetition of our symbols. For example, suppose that we
want to form all “words” of length k from the “alphabet” of symbols ta, bu. We can view this
as a branching process:

H

b

bb

bbbb

bbaa
b

ba

babb

baaa

ab

a

ab

abbb

abaa
b

aa

aabb

aaaa

a

a

According to the multiplication principle, the number of possibilities doubles at each step. If
we stop after k steps then the total number of words is

2
loomoon

1st letter

ˆ 2
loomoon

2nd letter

ˆ ¨ ¨ ¨ ˆ 2
loomoon

kth letter

“ 2k.
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In general we have the following.

Words (i.e., Permutations With Repeated Symbols)

Suppose we have an “alphabet” with n possible letters. Then the number of “words” of
length k is given by

n
loomoon

1st letter

ˆ n
loomoon

2nd letter

ˆ ¨ ¨ ¨ ˆ n
loomoon

kth letter

“ nk.

Example. A certain state uses license plates with a sequence of letters followed by a sequence
of digits. The symbols on a license plate are necessarily ordered.

(a) How many license plates are possible if 2 letters are followed by 4 digits?

(b) How many license plates are possible if 3 letters are followed by 3 digits?

[Assume that the alphabet has 26 letters.]

Solution. (a) The problem doesn’t say whether symbols can be repeated (i.e., whether we
are dealing with words or permutations) so let’s solve both cases. If symbols can be repeated
then we have

#pplatesq “ 26
loomoon

1st letter

ˆ 26
loomoon

2nd letter

ˆ 10
loomoon

1st digit

ˆ 10
loomoon

2nd digit

ˆ 10
loomoon

3rd digit

ˆ 10
loomoon

4th digit

“ 6, 760, 000.

If symbols cannot be repeated then we have

#pplatesq “ 26
loomoon

1st letter

ˆ 25
loomoon

2nd letter

ˆ 10
loomoon

1st digit

ˆ 9
loomoon

2nd digit

ˆ 8
loomoon

3rd digit

ˆ 7
loomoon

4th digit

“ 3, 276, 000.

(b) If symbols can be repeated then we have

#pplatesq “ 26
loomoon

1st letter

ˆ 26
loomoon

2nd letter

ˆ 26
loomoon

3rd letter

ˆ 10
loomoon

1st digit

ˆ 10
loomoon

2nd digit

ˆ 10
loomoon

3rd digit

“ 17, 576, 000.

If symbols cannot be repeated then we have

#pplatesq “ 26
loomoon

1st letter

ˆ 25
loomoon

2nd letter

ˆ 24
loomoon

3rd letter

ˆ 10
loomoon

1st digit

ˆ 9
loomoon

2nd digit

ˆ 8
loomoon

3rd digit

“ 11, 232, 000.

Problems involving words and permutations are relatively straightforward. It is more difficult
to count unordered collections of objects (often called combinations).
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Problem. Suppose that there are n objects in a bag. We reach in and grab a collection of k
unordered objects at random. Find a formula for the number nCk of possible choices.

In order to count these combinations we will use a clever trick:14 Recall that the number of
ways to choose k ordered objects is

nPk “
n!

pn´ kq!
.

On the other hand, we can choose such an ordered collection by first choosing an unordered
collection in nCk ways, and then putting the k objects in order in k! ways. We conclude that

#(ordered collections) “ #(unordered collections)ˆ#(orderings)

nPk “ nCk ˆ k!

nCk “
nPk
k!

“
n!{pn´ kq!

k!
“

n!

k!pn´ kq!
.

Combinations (i.e., Unordered Permutations)

Suppose there are n distinct objects in a bag. You reach in and grab an unordered
collection of k objects at random. The number of ways to do this is

nCk “
n!

k!pn´ kq!
.

Yes, indeed, these are just the binomial coefficients again. We have now seen four different
interpretations of these numbers:

• The entry in the the nth row and kth diagonal of Pascal’s Triangle.

• The coefficient of pkqn´k in the expansion of pp` qqk.

• The number of words that can be made with k copies of p and n´ k copies of q.

• The number of ways to choose k unordered objects from a collection of n.

Each of these interpretations is equally valid. In mathematics we usually emphasize the second
interpretation by calling these numbers the binomial coefficients and we emphasize the fourth
interpretation when we read the notation out loud:

ˆ

n

k

˙

“
n!

k!pn´ kq!
“ “n choose k.”

14You may remember this trick from our discussion of binomial coefficients.
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Principles of counting can get much fancier than this, but I’ll stop here because these are all
the ideas that we will need in our applications to probability and statistics. For example, here
is an application to so-called urn problems.15

Example. Suppose that an urn contains 2 red balls and 4 green balls. Suppose you reach in
and grab 3 balls at random. If X is the number of red balls you get, compute the probability
that X “ 1. That is,

P pX “ 1q “ P pyou get 1 red and 2 green ballsq “ ?

I will present two solutions.

First Solution. Let’s say that our collection of 3 balls is unordered. The sample space is

S “ tunordered selections of 3 balls from an urn containing 6 ballsu

and we conclude that

#S “ 6C3 “

ˆ

6

3

˙

“
6!

3!3!
“ 20.

Let us assume that each of these 20 outcomes is equally likely. Now consider the event

E “ “X “ 1”

“ tcollections consisting of 1 red and 2 green ballsu.

In order to count these we must choose 1 ball from the 2 red balls in the urn and we must
choose 2 unordered balls from the 4 green balls in the urn. The order of these two choices
doesn’t matter; in either case we find that

#E “ #(ways to choose the 1 red ball)ˆ#(ways to choose the 2 green balls)

“

ˆ

2

1

˙

ˆ

ˆ

4

2

˙

“ 2ˆ 6 “ 12.

We conclude that

P pX “ 1q “

`

2
1

˘`

4
2

˘

`

6
3

˘ “
2 ¨ 6

20
“

3

5
“ 60%.

Second Solution. On the other hand, let’s assume that our selection of 3 balls is ordered.
Then we have

S “ tordered selections of 3 balls from an urn containing 6 ballsu

15In probability an “urn” just refers to any kind of container. The use of the word “urn” is traditional in
this subject and goes back to George Pólya.
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and hence

#S “ 6P3 “
6!

3!
“ 6 ¨ 5 ¨ 4 “ 120.

But now the event

E “ “X “ 1” “ tordered selections containing 1 red and 2 green ballsu

is a bit harder to count. There are many ways to do it, each of them more or less likely to
confuse you. Here’s one way. Suppose the six balls in the urn are labeled as r1, r2, g1, g2, g3, g4.
To choose an ordered collection of 3 let us first choose the pattern of colors:

rgg, grg, ggr.

There are 3 “
`

3
1

˘

ways to do this.16 Now let us add labels. There are 2P1 “ 2 ways to place
a label on the red ball and there are 4P2 “ 4 ¨ 3 “ 12 ways to place labels on the green balls,
for a grand total of

#E “

ˆ

3

1

˙

ˆ 2P1 ˆ 4P2 “ 3ˆ 2ˆ 12 “ 72 choices.

We conclude that

P pX “ 1q “

`

3
1

˘

ˆ 2P1 ˆ 4P2

6P3
“

72

120
“

3

5
“ 60%.

The point I want to emphasize is that we get the same answer either way, so you are free to
use your favorite method. I think the first method (using unordered combinations) is easier.

Modified Example. In a classic urn problem such as the previous example, the balls are
selected from the urn without replacement. That is, we either

• select all of the balls in one chunk, or

• select the balls one at a time without putting them back in the urn.

Now let’s suppose that after each selection the ball is replaced in the urn. That is: We grab
a ball, record its color, then put the ball back and mix up the urn. This has the effect of
“erasing the memory” of our previous choices, and now we might as well think of each ball
selection as a “fancy coin flip,” where “heads”““red” and “tails”““green.”

Assuming that all six balls are equally likely, our fancy coin satisfies

P pheadsq “ P predq “
2

6
“

1

3
and P ptailsq “ P pgreenq “

4

6
“

2

3
.

If we select a ball 3 times (with replacement) and let Y be the number of “heads” (i.e., “reds”)
then the formula for binomial probability gives

P pY “ 1q “ P pwe get 1 red and 2 green balls, in some orderq

16Choose one position for the red ball out of three possible positions.
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“

ˆ

3

1

˙

P predq1P pgreenq2

“

ˆ

3

1

˙ˆ

1

3

˙1ˆ2

3

˙2

“
12

27
“

4

9
“ 44.44%.

Note that the probability changed because we changed how the experiment is performed.

To summarize, here is a complete table of probabilities for the random variables X and Y .
Recall that we have an urn containing 2 red and 4 green balls. We let X be the number of red
balls obtained when 3 balls are selected without replacement, and we let Y be the number
of red balls obtained when 3 balls are selected with replacement.17

k 0 1 2 3

P pX “ kq
p20qp

4
3q

p63q
“ 4

20
p21qp

4
2q

p63q
“ 12

20
p22qp

4
1q

p63q
“ 4

20
p23qp

4
1q

p63q
“ 0

P pY “ kq
`

3
0

˘ `

1
3

˘0 `2
3

˘3
“ 8

27

`

3
2

˘ `

1
3

˘2 `2
3

˘2
“ 12

27

`

3
2

˘ `

1
3

˘2 `2
3

˘1
“ 6

27

`

3
3

˘ `

1
3

˘3 `2
3

˘0
“ 1

27

A random variable of type X above has the intimidating name of hypergeometric distribution,
which I think is ridiculous. Here is the general situation.

Hypergeometric Probability (i.e., Urn Problems)

Suppose that an urn contains r red balls and g green balls. Suppose you reach in and
grab n balls without replacement (either ordered or unordered) and let X be the number
of red balls you get. Then we have

P pX “ kq “

`

r
k

˘`

g
n´k

˘

`

r`g
n

˘ .

We say that the random variable X has a hypergeometric distribution. If instead we
replace the ball after each selection then X has the familiar binomial distribution:

P pX “ kq “

ˆ

n

k

˙ˆ

r

r ` g

˙nˆ g

r ` g

˙n´k

.

Since the binomial distribution (coin flipping) can be generalized to the multinomial distri-
bution (dice rolling), you might wonder if there is also a “multihypergeometric” distribution.
There is, and the details are pretty much the same. Here is the statement.

17The formula
`

2
3

˘

“ 2!
3!p´1q!

makes no sense because p´1q! is not defined. However, we might as well say that
`

2
3

˘

“ 0 because is it impossible to choose 3 things from a set of 2.
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Multihypergeometric Probability (Please Ignore the Stupid Name)

Suppose that an urn contains ri balls of color i for i “ 1, 2, . . . , s. Suppose that you reach
in and grab n balls without replacement and let Xi be the number of balls you get with
color i. Then the probability of getting k1 balls of color 1, k2 balls of color 2, . . . and ks
balls of color s is

P pX1 “ k1, X2 “ k2, . . . , Xs “ ksq “

ˆ

r1
k1

˙ˆ

r2
k2

˙

¨ ¨ ¨

ˆ

rs
ks

˙

ˆ

r1 ` r2 ` ¨ ¨ ¨ ` rs
n

˙ .

To end this section let me present a few more challenging examples.

Poker Hands. In a standard deck of cards there are 4 possible “suits” (♣,♦,♥,♠) and 13
possible “ranks” (2, 3, 4, . . . , 9, 10, J,Q,K,A). Each card has a suit and a rank, and all possible
combinations occur, so a standard deck contains

4
loomoon

# suits

ˆ 13
loomoon

# ranks

“ 52 cards.

In the game of poker, a “hand” of 5 cards is dealt from the deck. If we regard the cards in a
hand as ordered then the number of possible hands is

52P5 “ 52
loomoon

1st card

ˆ 51
loomoon

2nd card

ˆ 50
loomoon

3rd card

ˆ 49
loomoon

4th card

ˆ 48
loomoon

5th card

“
52!

47!
“ 311, 875, 200.

However, it is more conventional to regard a hand of cards as unordered. Note that each
unordered hand can be ordered in 5! “ 120 ways, thus to obtain the number of unordered
hands we should divide the number of ordered hands by 5! to obtain

52C5 “
52P5

5!
“

52!

5! ¨ 47!
“

52!{47!

5!
“

ˆ

52

5

˙

“
311, 875, 200

120
“ 2, 598, 960.

In other words, there are approximately 2.6 million different poker hands.

Let S be the sample space of unordered poker hands, so that #S “
`

52
5

˘

“ 2, 598, 960. There
are certain kinds of events E Ď S that have different values in the game based on how rare
they are. For example, if our hand contains 3 cards of the same rank (regardless of suit) and
2 cards from two other ranks then say we have “3 of a kind.” Now consider the event

E “ twe get 3 of a kindu.
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If all poker hands are equally likely then the probability of getting “3 of a kind” is

P pEq “
#E

#S
“

#E

2, 598, 960
,

and it only remains to count the elements of E.

There are many ways to do this, each of them more or less likely to confuse you. Here’s one
method that I like. In order to create a hand in the set E we make a sequence of choices:

• First choose one of the 13 ranks for our triple. There are
`

13
1

˘

“ 13 ways to do this.

• From the 4 suits at this rank, choose 3 for the triple. There are
`

4
3

˘

“ 4 ways to do this.

• Next, from the remaining 12 ranks we choose 2 ranks for the singles. There are
`

12
2

˘

“ 66
ways to do this.

• For the first single we can choose the suit in
`

4
1

˘

“ 4 ways.

• Finally, we can choose the rank of the second single in
`

4
1

˘

“ 4 ways.

For example, suppose our first choice is the rank tJu. Then from the suits t♣,♦,♥,♠u we
choose the triple t♣,♥,♠u. Next we choose the ranks t5, Au from the remaining 12, and
finally we choose the suits t♦u and t♣u for the singles. The resulting hand is

J♣, J♥, J♠, 5♦, A♣.

In summary, the total number of ways to get “3 of a kind” is

#E “

ˆ

13

1

˙

loomoon

choose rank
for triple

ˆ

ˆ

4

3

˙

loomoon

choose triple
from rank

ˆ

ˆ

12

2

˙

loomoon

choose ranks
for singles

ˆ

ˆ

4

1

˙

loomoon

choose single
from rank

ˆ

ˆ

4

1

˙

loomoon

choose single
from rank

“ 13ˆ 4ˆ 66ˆ 4ˆ 4

“ 54, 912,

hence the probability of getting “3 of a kind” is

P pEq “
#E

#S
“

54, 912

2, 598, 960
“ 2.11%.

That problem was tricky, but once you see the pattern it’s not so bad. Here are two more
examples.

A poker hand consisting of 3 cards from one rank and 2 cards from a different rank is called
a “full house.” Consider the event

F “ twe get a full houseu.
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Then using a similar counting procedure gives

#F “

ˆ

13

1

˙

loomoon

choose rank
for triple

ˆ

ˆ

4

3

˙

loomoon

choose triple
from rank

ˆ

ˆ

12

1

˙

loomoon

choose rank
for double

ˆ

ˆ

4

2

˙

loomoon

choose double
from rank

“ 13ˆ 4ˆ 12ˆ 6

“ 3, 744,

and hence the probability of getting a “full house” is

P pF q “
#F

#S
“

3, 744

2, 598, 960
“ 0.144%.

We conclude that a “full house” is approximately 7 times more valuable than “3 of a kind.”

Finally, let us consider the event G “ twe get 4 of a kindu, which consists of 4 cards from one
rank and 1 card from a different rank. Using the same counting method gives

#G “

ˆ

13

1

˙

loomoon

choose rank
for quadruple

ˆ

ˆ

4

4

˙

loomoon

choose quadruple
from rank

ˆ

ˆ

12

1

˙

loomoon

choose rank
for single

ˆ

ˆ

4

1

˙

loomoon

choose single
from rank

“ 13ˆ 1ˆ 12ˆ 4

“ 624,

and hence the probability of “4 of a kind” is

P pGq “
#G

#S
“

624

2, 598, 960
“ 0.024%.

Note that “4 of a kind” is exactly 6 times more valuable than a “full house.”

For your convenience, here is a table of the standard poker hands, listed in order of probability.
Most of them can be solved with the same method we used above. The rest can be looked up
on Wikipedia.
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Name of Hand Frequency Probability

Royal Flush 4 0.000154%

Straight Flush 36 0.00139%

Four of a Kind 624 0.024%

Full House 3,744 0.144%

Flush 5,108 0.197%

Straight 10,200 0.392%

Three of a Kind 54,912 2.11%

Two Pairs 123,552 4.75%

One Pair 1,098,240 42.3%

Nothing 1,302,540 50.1%

The event “nothing” is defined so that all of the probabilities add to 1. It is probably no
accident that the probability of getting “nothing” is slightly more than 50%. The inventors
of the game must have done this calculation.

1.7 Conditional Probability and Bayes’ Theorem

The following example will motivate the definition of conditional probability.

Motivating Example for Conditional Probability. Suppose we select 2 balls from an
urn that contains 3 red and 4 green balls. Consider the following events:

A “ tthe 1st ball is redu,

B “ tthe 2nd balls is greenu.

Our goal is to compute P pAXBq. First note that we have

P pAq “
3

3` 7
“

3

7
and P pBq “

4

3` 4
“

4

7
.

If the balls are selected with replacement then these two events are independent and the
problem is easy to solve:

P pAXBq “ P pAq ¨ P pBq “
3

7
¨

4

7
“

12

49
“ 24.5%.

However, if the balls are selected without replacement then the events A and B will not be
independent. For example, if the first ball is red then this increases the chances that the
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second ball will be green because the proportion of green balls in the urn goes up. There are
two ways to deal with the problem.

First Solution (Count!). Two balls are taken in order and without replacement from an
urn containing 7 balls. The number of possible outcomes is

#S “ 7
loomoon

ways to choose
1st ball

ˆ 6
loomoon

ways to choose
2nd ball

“ 7 ¨ 6 “ 42.

Now let E “ A X B be the event that “the 1st ball is red and the 2nd ball is green.” Since
there are 3 red balls and 4 green balls in the urn we have

#E “ 3
loomoon

ways to choose
1st ball

ˆ 4
loomoon

ways to choose
2nd ball

“ 3ˆ 4 “ 12.

If the outcomes are equally likely then it follows that

P pAXBq “ P pEq “
#E

#S
“

3ˆ 4

7ˆ 6
“

12

42
“ 28.6%.

Second Solution (Look for a Shortcut). We saw above that

P pAXBq “
3ˆ 4

7ˆ 6
,

where the numerator and denominator are viewed as the answers to counting problems. But
it is tempting to group the factors vertically instead of horizontally, as follows:

P pAXBq “
3ˆ 4

7ˆ 6
“

3ˆ 4

7ˆ 6
“

3

7
ˆ

4

6
“

3

7
ˆ

4

6
.

Since the probability of A is P pAq “ 3{7 we observe that

P pAXBq “ P pAq ˆ
4

6
.

Unfortunately, 4{6 does not equal the probability of B. So what is it? Answer: This is the
probability that B happens, assuming that A already happened. Indeed, if the 1st ball is red
then the urn now contains 2 red balls and 4 green balls, so the new probability of getting
green is 4{p2` 4q “ 4{6. Let us define the notation

P pB|Aq “ the probability of “B given A”

“ the probability that B happens, assuming that A already happened.

In our case we have

P pB|Aq “ P p2nd ball is green, assuming that the 1st ball was redq
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“
#(remaining green balls)

#(all remaining balls)

“
4

6
.

Our solution satisfies the formula

P pAXBq “ P pAqP pB|Aq,

which is closely related to the “multiplication principle” for counting:

#pways AXB can happenq “ #pways A can happenqˆ

#pways B can happen, assuming that A already happenedq.

In general we make the following definition.

Conditional Probability

Let pP, Sq be a probability space and consider two events A,B Ď S. We use the notation
P pB|Aq to express the probability that “B happens, assuming that A happens.” Inspired
by the multiplication principle for counting, we define this probability as follows:

P pAXBq “ P pAq ¨ P pB|Aq.

As long as P pAq ‰ 0, we can also write

P pB|Aq “
P pAXBq

P pAq
“
P pB XAq

P pAq
.

This definition gives us a new persective on independent events. Recall that we say A,B Ď S
are independent whenever we have

P pAXBq “ P pAq ¨ P pBq.

On the other hand, the following formula is always true:

P pAXBq “ P pAq X P pB|Aq.

By comparing these formulas we see that A and B are independent precisely when

P pB|Aq “ P pBq.
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In other words, the probability of B remains the same whether or not A happens. This
gets to the heart of what we mean by “independent.” The events from our example are not
independent because we found that

66.66% “
4

6
“ P pB|Aq ą P pBq “

4

7
“ 57.1%.

In this case, since the occurrence of A increases the probability of B, we say that the events
A and B are positively correlated. More on this later.

Here are the basic properties of conditional probability.

Properties of Conditional Probability

Let pP, Sq be a probability space and fix an event A Ď S. Then the “probability assuming
that A happens” satisfies Kolmogorov’s three rules:

1. For all events E Ď S we have P pE|Aq ě 0.

2. For all events E1, E2 Ď S such that E1 X E2 “ H we have

P pE1 Y E2|Aq “ P pE1|Aq ` P pE2|Aq.

3. We have P pS|Aq “ 1.

In other words, the function P p´|Aq is an example of a probability measure. It follows
that P p´|Aq satisfies all the same general properties as P p´q. For example, we have

P pE|Aq ` P pE1|Aq “ 1 for any event E Ď S.

Here is a proof of the second property. I will leave the other two properties.

Proof of 2. For any events E1, E2 Ď S, the distributive law tells us that

AX pE1 Y E2q “ pAX E1q Y pAX E2q.

If the events E1, E2 satisfy E1 X E2 “ H then we must also have pAX E1q X pAX E2q “ H,
hence it follows from Kolmogorov’s Rule 2 that

P pAX pE1 Y E2qq “ P pAX E1q ` P pAX E2q.

Finally we divide both sides by P pAq to obtain

P pAX pE1 Y E2qq

P pAq
“
P pAX E1q

P pAq
`
P pAX E2q

P pAq
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P pE1 Y E2|Aq “ P pE1|Aq ` P pE2|Aq.

A Venn diagram can help us to visualize conditional probability. Consider any two events
A,B Ď S. At first we can think of the probability of B as the “area of blob B as a proportion
of the sample space S.” If we now assume that the event A happens then the sample space
“collapses onto A.” The new probability of B assuming A is the “area of blob A X B as a
proportion of the new sample space A.” Here is the picture:

This is how I remember the formula

P pB|Aq “
P pAXBq

P pAq
.

The next example will motivate Bayes’ Theorem.

Motivating Example for Bayes’ Theorem. Now let me describe the same experiment in
a different way. Behind a secret curtain there is an urn containing 3 red and 4 green balls.
Your friend goes behind the curtain, selects two balls without replacement and tells you that
their second ball was green. In that case, what is the probability that their first ball was red?

Solution. Again we define the events

A “ tthe 1st ball is redu,

B “ tthe 2nd ball is greenu.

In the previous example we used the multiplication principle to justify the formula

P pAXBq “ P pAq ¨ P pB|Aq,
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where P pB|Aq represents the probability that the 2nd ball is green, assuming that the 1st ball
was red. This was reasonable because the event A happens before the event B. But now we
are being asked to compute a backwards probability:

P pA|Bq “ the probability of “A given B”

“ the probability that A happened first, assuming that B happened later.

In other words, we are trying to compute how the event B in the future influences the event A
in the past. On the one hand, we might worry about this because it goes beyond our original
intentions when we defined the notion of conditional probability. On the other hand, we can
just mindlessly apply the algebraic formulas and see what happens.

By reversing the roles of A and B we obtain two formulas:

P pAXBq “ P pAq ¨ P pB|Aq

P pB XAq “ P pBq ¨ P pA|Bq.

The first formula is reasonable and the second formula might be nonsense, but let’s proceed
anyway. Since we always have P pAXBq “ P pB XAq the two formulas tell us that

P pBq ¨ P pA|Bq “ P pAq ¨ P pB|Aq

P pA|Bq “
P pAq ¨ P pB|Aq

P pBq
.

And since we already know that P pAq “ 3{7, P pBq “ 4{7 and P pB|Aq “ 4{6 we obtain

P pA|Bq “
P pAq ¨ P pB|Aq

P pBq
“
p3{7q ¨ p4{6q

4{7
“

1

2
“ 50%.

In summary: Without knowing anything about the 2nd ball, we would assume that the 1st
ball is red with probability P pAq “ 3{7 “ 42.9%. However, after we are told that the 2nd
ball is green this increases our belief that the 1st ball is red to P pA|Bq “ 50%. Even though
the computation involved some dubious ideas, it turns out that this method makes correct
predictions about the real world.

One of the first people to take backwards probability seriously was the Reverend Thomas
Bayes (1701–1761) although he never published anything during his lifetime. His ideas on
the subject were published posthumously by Richard Price in 1763 under the title An Essay
towards solving a Problem in the Doctrine of Chances. For this reason the general method
was named after him.

Bayes’ Theorem (Basic Version)

Let pP, Sq be a probability space and consider two events A,B Ď S. Let’s suppose that
A represents an event that happens before the event B. Then the forwards probability
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P pB|Aq and the backwards probability P pA|Bq are related by the formula

P pAq ¨ P pB|Aq “ P pBq ¨ P pA|Bq.

Here is the classic application of Bayes’ Theorem.

Classic Application of Bayes’ Theorem. A random person is administered a diagnostic
test for a certain disease. Consider the events

T “ tthe test returns positiveu,

D “ tthe person has the diseaseu.

Suppose that this test has the following false positive and false negative rates:

P pT |D1q “ 2% and P pT 1|Dq “ 1%.

So far this seems like an accurate test, but we should be careful. In order to evaluate the
test we should also compute the backwards probability P pD|T q. In other words: If the test
returns positive, what is the probability that the person actually has the disase?

First let us compute the other forwards probabilities P pT |Dq (true positive) and P pT 1|D1q
(true negative). To do this, recall that for any events A and E we have

P pE|Aq ` P pE1|Aq “ 1.

Substituting A “ D and E “ T gives

P pT |Dq ` P pT 1|Dq “ 1

P pT |Dq “ 1´ P pT 1|Dq “ 99%

and substituting A “ D1 and E “ T gives

P pT |D1q ` P pT 1|D1q “ 1

P pT 1|D1q “ 1´ P pT |D1q “ 98%.

Now Bayes’ Theorem says that

P pD|T q “
P pDq ¨ P pT |Dq

P pT q
,

but we still don’t have enough information to compute this because we still don’t know P pDq
and P pT q. Let us assume that the disease occurs in 1 out of every 1000 people:

P pDq “ 0.001 and P pD1q “ 0.999.
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Then we can compute P pT q from the Law of Total Probability:

P pT q “ P pD X T q ` P pD1 X T q

“ P pDq ¨ P pT |Dq ` P pD1q ¨ P pT |D1q

“ p0.001q ¨ p0.99q ` p0.999q ¨ p0.02q “ 2.01%.

Finally, we obtain

P pD|T q “
P pDq ¨ P pT |Dq

P pT q

“
P pDq ¨ P pT |Dq

P pDq ¨ P pT |Dq ` P pD1q ¨ P pT |D1q

“
p0.001q ¨ p0.99q

p0.001q ¨ p0.99q ` p0.999q ¨ p0.02q
“ 4.72%.

In other words: If a random persons test positive, there is a 4.72% chance that this person
actually has the disease. So I guess this is not a good test after all.

That was a lot of algebra. Here is a diagram of the situation:

We can view the experiment as a two step process. First, the person either has or does not have
the disease. Then, the test returns positive or negative. The diagram shows the four possible
outcomes as branches of a tree. The branches are labeled with the forwards probabilities. To
obtain the probability of a leaf we multiply the corresponding branches. Then to obtain the
backwards probability

P pD|T q “
P pD X T q

P pT q
“

P pD X T q

P pD X T q ` P pD1 X T q

we divide the probability of the D X T leaf by the sum of the D X T and D1 X T leaves.

And here is a more comprehensive example of Bayes’ Theorem.
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Comprehensive Example of Bayes’ Theorem. There are three bowls on a table contain-
ing red and white chips, as follows:

The table is behind a secret curtain. Our friend goes behind the curtain and returns with a
red chip. Problem: Which bowl did the chip come from?

Solution. Of course, we could just ask our friend which bowl the chip came from, but in this
scenario they are not allowed to tell us. So let Bi be the event that “the chip comes from
bowl i.” Before we know that the chip is red, it is reasonable to assume that the three bowls
are equally likely. This is our so-called prior distribution:

i 1 2 3

P pBiq 1{3 1{3 1{3

After we learn that the chip is red, we should update our distribution to reflect the new
information. That is, we should replace our prior distribution

P pB1q, P pB2q, P pB3q

with the posterior distribution

P pB1|Rq, P pB2|Rq, P pB3|Rq,

where R is the event that “the chip is red.” According to Bayes’ Theorem we have

P pBi|Rq “
P pBiq ¨ P pR|Biq

P pRq

and according to the Law of Total Probability we have

P pRq “ P pB1 XRq ` P pB2 XRq ` P pB3 XRq

“ P pB1q ¨ P pR|B1q ` P pB2q ¨ P pR|B2q ` P pB3q ¨ P pR|B3q

Thus we obtain a formula expressing the posterior distribution (backwards probabilities)
P pBi|Rq in terms of the prior distribution P pBiq and the forwards probabilities P pR|Biq:

P pBi|Rq “
P pBiqP pR|Biq

P pB1qP pR|B1q ` P pB2qP pR|B2q ` P pB3qP pR|B3q
.
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Since we know the distribution of chips in each bowl, we know the forwards probabilities:

P pR|B1q “
2

2` 2
“

1

2
, P pR|B2q “

1

1` 2
“

1

3
, P pR|B3q “

5

5` 4
“

5

9
.

Finally, by plugging in these values we obtain the posterior distribution when the chip is red.
For fun, I also calculated the posterior distribution when the chip is white:

i 1 2 3

P pBiq 1{3 1{3 1{3

P pBi|Rq 9{25 6{25 10{25

P pBi|W q 9{29 12{29 8{29

Here’s a picture:

We still don’t know which bowl the chip came from, but at least we can make an educated
guess. If the chip is red then it probably came from bowl 3. If the chip is white then it
probably came from bowl 2.

Here is the general situation.

Bayes’ Theorem (Full Version)

Suppose that our sample space S is partitioned into m “bowls” as follows:

B1 YB2 Y ¨ ¨ ¨ YBm “ S with Bi XBj “ H for all i ‰ j.

The events Bi partition any other event A Ď S as in the following picture:
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Suppose we know the prior probabilities P pBiq and the forwards probabilities P pA|Biq.
Then the Law of Total Probability says

P pAq “ P pB1 XAq ` P pB2 XAq ` ¨ ¨ ¨ ` P pBm XAq

“ P pB1q ¨ P pA|B1q ` P pB2q ¨ P pA|B2q ` ¨ ¨ ¨ ` P pBmq ¨ P pA|Bmq,

which can be shortened to

P pAq “
m
ÿ

i“1

P pBiq ¨ P pA|Biq.

Finally, we use Bayes’ Theorem to compute the kth posterior (backwards) probability:

P pBk|Aq “
P pBk XAq

P pAq
“

P pBkq ¨ P pA|Bkq
řm
i“1 P pBiq ¨ P pA|Biq

.

This is an important principle in statistics because it allows us to estimate properties of an
unknown distribution by using the partial information gained from an experiment. We will
return to this problem in the third section of the course.

Exercises 2

2.1. Suppose that a fair s-sided die is rolled n times.

(a) If the i-th side is labeled ai then we can think of the sample space S as the set of all
words of length n from the alphabet ta1, . . . , asu. Find #S.

(b) Let E be the event that “the 1st side shows up k1 times, and . . . and the s-th side shows
up ks times. Find #E. [Hint: The elements of E are words of length n in which the
letter ai appears ki times.]
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(c) Compute the probability P pEq. [Hint: Since the die is fair you can assume that the
outcomes in S are equally likely.]

2.2. In a certain state lottery four numbers are drawn (one and at a time and with replace-
ment) from the set t1, 2, 3, 4, 5, 6u. You win if any permutation of your selected numbers is
drawn. Rank the following selections in order of how likely each is to win.

(a) You select 1, 2, 3, 4.

(b) You select 1, 3, 3, 5.

(c) You select 4, 4, 6, 6.

(d) You select 3, 5, 5, 5.

(e) You select 4, 4, 4, 4.

2.3. A bridge hand consists of 13 (unordered) cards taken (at random and without replace-
ment) from a standard deck of 52. Recall that a standard deck contains 13 hearts and 13
diamonds (which are red cards), 13 clubs and 13 spades (which ard black cards). Find the
probabilities of the following hands.

(a) 4 hearts, 3 diamonds, 2 spades and 4 clubs.

(b) 4 hearts, 3 diamonds and 6 black cards.

(c) 7 red cards and 6 black cards.

2.4. Two cards are drawn (in order and without replacement) from a standard deck of 52.
Consider the events

A “ tthe first card is a heartu

B “ tthe second card is redu.

Compute the probabilities

P pAq, P pBq, P pB|Aq, P pAXBq, P pA|Bq.

2.5. An urn contains 2 red and 2 green balls. Your friend selects two balls (at random and
without replacement) and tells you that at least one of the balls is red. What is the probability
that the other ball is also red?

2.6. There are two bowls on a table. The first bowl contains 3 chips and 3 green chips. The
second bowl contains 2 red chips and 4 green chips. Your friend walks up to the table and
chooses one chip at random. Consider the events

B1 “ tthe chip comes from the first bowlu,
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B2 “ tthe chip comes from the second bowlu,

R “ tthe chip is redu.

(a) Compute the probabilities P pR|B1q and P pR|B2q.

(b) Assuming that your friend is equally likely to choose either bowl (i.e., P pB1q “ P pB2q “

1{2), compute the probability P pRq that the chip is red.

(c) Compute P pB1|Rq. That is, assuming that your friend chose a red chip, what is the
probability that they got it from the first bowl?

2.7. A diagnostic test is administered to a random person to determine if they have a certain
disease. Consider the events

T “ tthe test returns positiveu,

D “ tthe person has the diseaseu.

Suppose that the test has the following “false positive” and “false negative” rates:

P pT |D1q “ 2% and P pT 1|Dq “ 3%.

(a) For any events A,B recall that the Law of Total Probability says

P pAq “ P pAXBq ` P pAXB1q.

Use this to give an algebraic proof of the formula

1 “ P pB|Aq ` P pB1|Aq.

(b) Use part (a) to compute the probability P pT |Dq of a “true positive” and the probability
P pT 1|D1q of a “true negative.”

(c) Assume that 10% of the population has the disease, so that P pDq “ 10%. In this case
compute the probability P pT q that a random person tests positive. [Hint: The Law of
Total Probability says P pT q “ P pT XDq ` P pT XD1q.]

(d) Suppose that a random person is tested and the test returns positive. Compute the
probability P pD|T q that this person actually has the disease. Is this a good test?

2.8. Consider a classroom containing n students. We ask each student for their birthday,
which we record as a number from the set t1, 2, . . . , 365u (i.e., we ignore leap years). Let S be
the sample space.

(a) Explain why #S “ 365n.

(b) Let E be the event that tno two students have the same birthdayu. Compute #E.
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(c) Assuming that all birthdays are equally likely, compute the probability of the event

E1 “ tat least two students have the same birthdayu.

(d) Find the smallest value of n such that P pE1q ą 50%.

2.9. It was not easy to find a formula for the entries of Pascal’s Triangle. However, once we’ve
found the formula it is not difficult to check that the formula is correct.

(a) Explain why n! “ nˆ pn´ 1q!.

(b) Use part (a) to verify that

pn´ 1q!

pk ´ 1q!pn´ kq!
`

pn´ 1q!

k!pn´ 1´ kq!
“

n!

k!pn´ kq!
.

[Hint: Try to get a common denominator.]

Review of Key Topics

• Suppose an experiment has a finite set S of equally likely outcomes. Then the probability
of any event E Ď S is

P pEq “
#E

#S
.

• For example, if we flip a fair coin n times then the #S “ 2n outcomes are equally likely.
The number of sequences with k H’s and n´ k T is

`

n
k

˘

, thus we have

P pk headsq “
#(ways to get k heads)

#S
“

`

n
k

˘

2n
.

• If we flip a strange coin with P pHq “ p and P pT q “ q then the #S “ 2n outcomes are
not equally likey. In this case we have the more general formula

P pk headsq “

ˆ

n

k

˙

P pHqkP pT qn´k “

ˆ

n

k

˙

pkqn´k.

This agrees with the previous formula when p “ q “ 1{2.

• These binomial probabilities add to 1 because of the binomial theorem:

n
ÿ

k“0

ˆ

n

k

˙

pkqn´k “ pp` qqn “ 1n “ 1.

• In general, a probability measure P on a sample space S must satisfy three rules:
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1. For all E Ď S we have P pEq ě 0.

2. For all E1, E2 Ď S with E1 X E2 “ H we have

P pE1 Y E2q “ P pE1q ` P pE2q.

3. We have P pSq “ 1.

• Many other properties follow from these rules, such as the principle of inclusion-exclusion,
which says that for general events E1, E2 Ď S we have

P pE1 Y E2q “ P pE1q ` P pE2q ´ P pE1 X E2q.

• Also, if E1 is the complement of an event E Ď S then we have P pE1q “ 1´ P pEq.

• Venn diagrams are useful for verifying identities such as de Morgan’s laws:

pE1 X E2q
1 “ E11 Y E

1
2,

pE1 Y E2q
1 “ E11 X E

1
2.

• Given events E1, E2 Ď S we define the conditional probability:

P pE1|E2q “
P pE1 X E2q

P pE2q
.

• Bayes’ Theorem relates the conditional probabilites P pE1|E2q and P pE2|E1q:

P pE1q ¨ P pE2|E1q “ P pE2q ¨ P pE1|E2q.

• The events E1, E2 are called independent if any of the following formulas hold:

P pE1|E2q “ P pE1q or P pE2|E1q “ P pE2q or P pE1 X E2q “ P pE1q ¨ P pE2q.

• Suppose our sample space is partitioned as S “ E1 Y E2 Y ¨ ¨ ¨ Y Em with Ei X Ej “ H
for all i ‰ j. For any event F Ď S the law of total probability says

P pF q “ P pE1 X F q ` P pE2 X F q ` ¨ ¨ ¨ ` P pEm|F q

P pF q “ P pE1q ¨ P pF |E1q ` P pE2q ¨ P pF |E2q ` ¨ ¨ ¨ ` P pEmq ¨ P pF |Emq.

• Then the general version of Bayes’ Theorem says that

P pEk|F q “
P pEk X F q

P pF q
“

P pEkq ¨ P pF |Ekq
řm
i“1 P pEiq ¨ P pF |Eiq

.
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• The binomial coefficients have four different interpretations:
ˆ

n

k

˙

“ entry in the nth row and kth diagonal of Pascal’s Triangle,

“ coefficient of xkyn´k in the expansion of px` yqn,

“ #pwords made from k copies of one letter and n´ k copies of another letterq,

“ #pways to choose k unordered things without replacement from n thingsq.

• And they have a nice formula:
ˆ

n

k

˙

“
n!

k!ˆ pn´ kq!
“
nˆ pn´ 1q ˆ ¨ ¨ ¨ ˆ pn´ k ` 1q

k ˆ pk ´ 1q ˆ ¨ ¨ ¨ ˆ 1
.

• Ordered things are easier. Consider words of length k from an alphabet of size n:

#pwordsq “ nˆ nˆ ¨ ¨ ¨ ˆ n “ nk,

#pwords without repeated lettersq “ nˆ pn´ 1q ˆ ¨ ¨ ¨ ˆ pn´ k ` 1q “
n!

pn´ kq!
.

• More generally, the number of words containing k1 copies of the letter “a1,” k2 copies of
the letter “a2,” . . . and ks copies of the letter “as” is

ˆ

k1 ` k2 ` ¨ ¨ ¨ ` ks
k1, k2, . . . , ks

˙

“
pk1 ` k2 ` ¨ ¨ ¨ ` ksq!

k1!ˆ k2!ˆ ¨ ¨ ¨ ˆ ks!

• These numbers are called multinomial coefficients because of the multinomial theorem:

pp1 ` p2 ` ¨ ¨ ¨ ` psq
n “

ÿ

ˆ

n

k1, k2, . . . , ks

˙

pk11 p
k2
2 ¨ ¨ ¨ p

ks
s ,

where the sum is over all possible choices of k1, k2, . . . , ks such that k1`k2`¨ ¨ ¨`ks “ n.
Suppose that we have an s-sided die and pi is the probability that side i shows up. If
the die is rolled n times then the probability that side i shows up exactly ki times is the
multinomial probability:

P pside i shows up ki timesq “

ˆ

n

k1, k2, . . . , ks

˙

pk11 p
k2
2 ¨ ¨ ¨ p

ks
s .

• Finally, suppose that an urn contains r red and g green balls. If n balls are drawn
without replacement then

P pk redq “

`

r
k

˘`

g
n´k

˘

`

r`g
n

˘ .

More generally, if the urn contains ri balls of color i for i “ 1, 2, . . . , s then the probability
of getting exactly ki balls of color i is

P pki balls of color iq “

`

r1
k1

˘`

r2
k2

˘

¨ ¨ ¨
`

rs
ks

˘

`

r1`r2`¨¨¨`rs
k1`k2`¨¨¨`ks

˘ .

These formulas go by a silly name: hypergeometric probability.
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2 Algebra of Random Variables

2.1 Definition of Discrete Random Variables

We have finished covering the basics probability. The next section of the course is about
“random variables.” To motivate the definition, let me ask a couple of silly questions.

Silly Question. Suppose that an urn contains 1 red ball, 1 green ball and 1 blue ball. If you
reach in and grab one ball, what is the average (or expected) outcome?

Silly Answer. The sample space is S “ tred, green, blueu. If the outcomes are equally likely
then to compute the average we simply add up the outcomes and divide by #S “ 3:

average “
red` green` blue

3
“

1

3
¨ red`

1

3
¨ green`

1

3
¨ blue.

More generally, suppose that the outcomes have probabilities

P predq “ p, P pgreenq “ q and P pblueq “ r.

In this case we should use the weighted average:

weighted average “ P predq ¨ red` P pgreenq ¨ green` P pblueq ¨ blue

“ p ¨ red` q ¨ green` r ¨ blue.

Note that this agrees with our previous answer when p “ q “ r “ 1{3.

Of course this silly question and answer make no sense. Here’s a less silly example.

Less Silly Question. A student’s final grade in a certain course is based on their scores on
three exams. Suppose that the student receives the following grades:

Exam 1 Exam 2 Exam 3

Grade A B- A-

Use this information to compute the student’s final grade.

Less Silly Answer. The instructor will assign non-negative weights p, q, r ě 0 to the three
exams so that p` q ` r “ 1. The student’s final grade is a weighted average:

final grade “ p ¨ (A)` q ¨ (B-)` r ¨ (A-).

In particular, if the exams are equally weighted then we obtain

final grade “
1

3
¨ (A)`

1

3
¨ (B-)`

1

3
¨ (A-) “

(A)` (B-)` (A-)

3
.
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This is still nonsense. It is meaningless to compute the average of the three symbols A, B- and
A- because these symbols are not numbers. However, this example is not completely silly
because we know that similar computations are performed every day. In order to compute the
final grade using this method we need to have some scheme for converting letter grades into
numbers. There is no best way to do this but here is one popular scheme (called the Grade
Point Average):

Letter GPA

A 4.00
A- 3.67
B+ 3.33
B 3.00
B- 2.67
etc. etc.

For example, if the exams are equally weighted then our hypothetical student’s final GPA is

4.00` 2.67` 3.67

3
“ 3.45,

which I guess translates to a high B`.18 Thus we see that for some purposes it is necessary to
convert the outcomes of an experiment into numbers. This is the idea of a random variable.

Definition of Random Variable

Let S be the sample space of an experiment. The outcomes can take any form such as
colors, letters, or brands of cat food. A random variable is any function X that converts
outcomes into real numbers:

X : S Ñ R.

For a given outcome s P S we use the functional notation Xpsq P R to denote the
associated real number.

We have already seen several examples of random variables. For example, suppose that a coin
is flipped 3 times. Let us encode the outcomes as strings of the symbols H and T , so the
sample space is

S “ tTTT, TTH, THT,HTT, THH,HTH,HHT,HHHu.

18I want to emphasize that I do not use any such scheme in my teaching. Instead, I keep all scores in numerical
form throughout the semester and only convert to letter grades at the very end. I sometimes estimate grade
ranges for individual exams, but these can only be approximations.
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Let X be the number of heads that we get. We can think of this as a function X : S Ñ R
that takes in a string of symbols s P S and spits out the number Xpsq of Hs that this string
contains. Here is a table showing the “graph” of this function:

s TTT TTH THT HTT THH HTH HHT HHH

Xpsq 0 1 1 1 2 2 2 3

We will use the notation SX Ď R to denote the set of all possible values of the random variable
X, which we call the “support” of the random variable. In this example we have

SX “ t0, 1, 2, 3u.

If the support is a finite set or an infinite discrete set of numbers then we say that X is a
“discrete random variable.”

Definition of Discrete Random Variable

Let X : S Ñ R be a random variable. The set of possible values SX is called the support:

SX “ tall possible values of Xu “ tXpsq : s P Su.

If the support is finite (for example SX “ t1, 2, 3u) or if it is infinite and discrete (for
example SX “ t1, 2, 3, . . .u) then we say that X is a discrete random variable. An example
of a non-discrete (continuous) infinite set is the real interval

r0, 1s “ tx P R : 0 ď x ď 1u.

We are not yet ready to discuss continuous random variables.

Let X : S Ñ R be a discrete random variable. For each number k P R we define the event

tX “ ku “ tall outcomes s P S such that Xpsq “ ku “ ts P S : Xpsq “ ku.

From our previous example we have

tX “ 0u “ tTTT u,

tX “ 1u “ tTTH, THT,HTT u,

tX “ 2u “ tTHH,HTH,HHT u,

tX “ 3u “ tHHHu.

For any value of k not in the support of X we have tX “ ku “ H, since there are no outcomes
corresponding to this value. Note that the sample space S is partitioned by the events tX “ ku
for all values of k P SX . In our example we have

S “ tX “ 0u Y tX “ 1u Y tX “ 2u Y tX “ 3u “
3
ď

k“0

tX “ ku
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and in general we use the notation

S “
ď

kPSX

tX “ ku

and we denote the probability of the event tX “ ku by

P pX “ kq “ P ptX “ kuq.

Since the events tX “ ku are mutually exclusive (indeed, each outcome of the experiment
corresponds to only one value of X), Kolmogorov’s Rules 2 and 3 tell us that the probabilities
add to 1:

S “
ď

kPSX

tX “ ku

P pSq “
ÿ

kPSX

P ptX “ kuq

1 “
ÿ

kPSX

P pX “ kq.

Observe that we have tX “ ku “ H and hence P pX “ kq “ P pHq “ 0 for any number k that
is not in the support of X. For example: If X is the number of heads that occur in 5 flips of
a fair coin then P pX “ ´2q “ P pX “ 7q “ P pX “ 3{2q “ 0.

Sometimes it is convenient to describe a random variable X in terms of the numbers P pX “ kq
without even mentioning the underlying experiment. This is the idea of a “probability mass
function.”

Definition of Probability Mass Function (pmf)

Let X : S Ñ R be a discrete random variable with support SX Ď X. The probability
mass function (pmf) of X is the real-valued function fX : R Ñ R that sends each real
number k to the probability P pX “ kq. In other words, we define

fXpkq “

#

P pX “ kq if k P SX ,

0 if k R SX .

Kolmogorov’s three rules of probability imply that the pmf satisfies

• For all k P R we have fXpkq ě 0.

• For any set of possible values A Ď SX we have

P pX P Aq “
ÿ

kPA

P pX “ kq “
ÿ

kPA

fXpkq.
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• The sum over all possible values of k is

1 “
ÿ

kPSX

P pX “ kq “
ÿ

kPSX

fXpkq.

The nice thing about the probability mass function fX : RÑ R is that we can draw its graph,
and there are two basic ways to do this. Consider again our running example where X is the
number of heads in 3 flips of a fair coin. In this case the pmf is

fXpkq “ P pX “ kq “

#

`

3
k

˘

{ 8 if k P t0, 1, 2, 3u,

0 otherwise.

If we draw this function very literally then we obtain the so-called line graph:

In this picture the probability is represented by the lengths of the line segments. However, it
is also common to replace each line segment by a rectangle of the same height and with width
equal to 1. We call this the probability histogram:
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In this case probability is represented by the areas of the rectangles. The line graph of a
discrete random variable is more mathematically correct than the histogram.19 The main
benefit of the histogram is that it will allow us later to make the transition from discrete to
continuous random variables, for which probability is represented as the area under a smooth
curve.

To complete the section, here is a more interesting example.

More Interesting Example. Roll two fair 6-sided dice and let X be the maximum of the
two numbers that show up. We will assume that the two dice are ordered since this makes the
#S “ 36 outcomes equally likely. Note that the support of X is SX “ t1, 2, 3, 4, 5, 6u. Here is
a diagram of the sample space with the events tX “ ku labeled:

Since the outcomes are equally likely we find the following probabilities:

k 1 2 3 4 5 6

P pX “ kq 1
36

3
36

5
36

7
36

9
36

11
36

This information allows us to draw the line graph and probability histogram:

19For example, see what happens when two possible values k, ` P SX are separated by less than one unit.
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Sometimes it is possible to find an algebraic formula for the pmf. In this case, one might
notice that the probability values lie along a straight line. After a bit of work, one can find
the equation of this line:

fXpkq “ P pX “ kq “

#

2k´1
36 if k P t1, 2, 3, 4, 5, 6u,

0 otherwise.

However, not all probability mass functions can be expressed with a nice formula.

2.2 Expected Value

So far we have seen that discrete probability can be visualized as a length (in the line graph)
or as an area (in the probability histogram). So why do we call it the probability mass
function?

To understand this we should think of the pmf fXpkq “ P pX “ kq as a distribution of point
masses along the real line. For example, consider a strange coin with P pHq “ 1{3 and let X
be the number of heads obtained when the coin is flipped 4 times. By now we can compute
these probabilities in our sleep:

k 0 1 2 3 4

P pX “ kq 16
81

32
81

24
81

8
81

1
81

But here’s a new question.

Question. If we perform this experiment many times, how many heads to we expect to get
on average? In other words, what is the expected value of the random variable X?

In order to answer this question it is surprisingly necessary to view the probabilities P pX “ kq
as point masses arranged along a line:
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In order to compute the “balance point” or the “center of mass” we will now borrow a principle
from physics.

Archimedes’ Law of the Lever

Suppose that two point masses m1 and m2 lie on a balance board at distances d1 and d2,
respectively, from the fulcrum.

Archimedes says that the system will balance precisely when

d1m1 “ d2m2.

First let us consider a random variable X that can only take two values SX “ tk1, k2u and let
us suppose that k1 ă k2. If we let µ “ ErXs denote the mean or the expected value20 then we
obtain the following picture:

20The letter µ is for mean and the letter E is for expected value.
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In the picture we have assumed that k1 ď µ ď k2, which turns out to be true, but it doesn’t
matter because the math will work out in any case. Observe that the point masses P pX “ k1q
and P pX “ k2q have distances µ ´ k1 and k2 ´ µ, respectively, from the fulcrum. Thus,
according to Archimedes, the system will balance precisely when

pµ´ k1qP pX “ k1q “ pk2 ´ µqP pX “ k2q.

We can solve this equation for µ to obtain

pµ´ k1qP pX “ k1q “ pk2 ´ µqP pX “ k2q

µ ¨ P pX “ k1q ´ k1 ¨ P pX “ k1q “ k2 ¨ P pX “ k2q ´ µ ¨ P pX “ k2q

µ ¨ P pX “ k1q ` µ ¨ P pX “ k2q “ k1 ¨ P pX “ k1q ` k2 ¨ P pX “ k2q

µ ¨ rP pX “ k1q ` P pX “ k2qs “ k1 ¨ P pX “ k1q ` k2 ¨ P pX “ k2q,

and since P pX “ k1q ` P pX “ k2q “ 1 this simplifies to

µ “ k1 ¨ P pX “ k1q ` k2 ¨ P pX “ k2q.

The same computation can be carried out for random variables with more than two possible
values. This motivates the following definition.

Definition of Expected Value

Let X : S Ñ R be a discrete random variable with support SX Ď R. Let fXpkq “ P pX “

kq be the associated probability mass function. Then we define the mean or the expected
value of X by the following formula:

µ “ ErXs “
ÿ

kPSX

k ¨ P pX “ kq “
ÿ

kPSX

k ¨ fXpkq.

The intuition is that µ is the center of mass for the probability mass function.
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In our previous example we had SX “ t0, 1, 2, 3, 4u. Then applying the formula gives

ErXs “
ÿ

kPSX

k ¨ P pX “ kq

“

4
ÿ

k“0

k ¨ P pX “ kq

“ 0 ¨ P pX “ 0q ` 1 ¨ P pX “ 1q ` 2 ¨ P pX “ 2q ` 3 ¨ P pX “ 3q ` 4 ¨ P pX “ 4q

“ 0 ¨
16

81
` 1 ¨

32

81
` 2 ¨

24

81
` 3 ¨

8

81
` 4 ¨

1

81

“
0` 32` 48` 24` 4

81
“

108

81
“

4

3
.

Interpretation. Consider a coin with P pHq “ 1{3. This should mean that heads shows up
on average 1{3 of the time. If we flip the coin 4 times then we expect that 1{3 of these flips
will show heads; in other words, heads should show up p1{3q ˆ 4 “ 4{3 times. This confirms
that our method of calculation was reasonable. It is remarkable that Archimedes’ Law of the
Lever helps to solve problems like this.

A Partly General Example. Consider a strange coin with P pHq “ p and P pT q “ q. Let
X be the number of heads obtained when the coin is flipped 3 times. We have the following
pmf:

k 0 1 2 3

P pX “ kq q3 3pq2 3p2q p3.

Then the formula for expected value gives

ErXs “
ÿ

kPSX

k ¨ P pX “ kq

“ 0 ¨ P pX “ 0q ` 1 ¨ P pX “ 1q ` 2 ¨ P pX “ 2q ` 3 ¨ P pX “ 3q

“ 0 ¨ q3 ` 1 ¨ 3pq2 ` 2 ¨ 3p2q ` 3 ¨ p3

“ 3pq2 ` 6p2q ` 3p3

“ 3ppq2 ` 2pq ` p2q

“ 3ppp` qq2.

Since p` q “ 1 this simplifies to ErXs “ 3p. In other words, if p is the average proportion of
flips that show heads then in 3 flips we expect to get 3p heads. That makes sense.

A Fully General Example. Consider a strange coin with P pHq “ p and P pT q “ q. Let
X be the number of heads obtained when the coin is flipped k times. We have the following
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binomial pmf:

P pX “ kq “

ˆ

n

k

˙

pkqn´k.

Then the formula for expected value gives

ErXs “
ÿ

kPSX

k ¨ P pX “ kq

“

n
ÿ

k“0

k ¨ P pX “ kq

“

n
ÿ

k“0

k

ˆ

n

k

˙

pkqn´k.

Wow, this is a complicated formula. On the other hand, since P pHq “ p is the average
proportion of flips that show heads, our intuition tells us that

(expected number of heads) “ (number of flips)ˆ (expected proportion of heads)

ErXs “ np.

So what can we do? On Exercise 3.8 below you will use some algebraic tricks and the binomial
theorem to show that the complicated formula above really does simplify to np. However, there
is a much better way to solve this problem which is based on general properties of the function
ErXs. We will discuss this in the next section.

2.3 Linearity of Expectation

In the last section we defined the expected value as the “center of mass” of a discrete probability
distribution. In this section we will develop a totally different point of view. First let me
describe how old random variables can be combined to form new ones.

The Algebra of Random Variables

Consider a fixed sample space S. Random variables on this space are just real valued
functions S Ñ R and as such they can be added and subtracted, multiplied (but not nec-
essarily divided) and scaled by constants. To be specific, consider two random variables

X,Y : S Ñ R.

Their sum is the function X ` Y : S Ñ R defined by the formula

pX ` Y qpsq “ Xpsq ` Y psq for all s P S

and their product is the function XY : S Ñ R defined by the formula

pXY qpsq “ Xpsq ¨ Y psq for all s P S.

75



Furthermore, if α P R is any constant (“scalar”) then we define the function αX : S Ñ R
by the formula

pαXqpsq “ α ¨Xpsq for all s P S.

Next let me give you an alternate formula for the expected value.

Alternate Formula for Expected Value

Let X : S Ñ R be a discrete random variable with support SX Ď R. For any outcome
s P S we will write P psq “ P ptsuq for the probability of the simple event tsu Ď S. Then
I claim that

ErXs “
ÿ

kPSX

k ¨ P pX “ kq “
ÿ

sPS

Xpsq ¨ P psq.

Instead of giving the proof right away, here’s an example to demonstrate that the formula is
true. Suppose that a coin with P pHq “ p and P pT q “ q is flipped twice and let X be the
number of heads obtained. The pmf is given by the following table:

k 0 1 2

P pX “ kq q2 2pq p2

Then our original formula for expected value gives

ErXs “ 0 ¨ P pX “ 0q ` 1 ¨ P pX “ 1q ` 2 ¨ P pX “ 2q

“ 0q2 ` 2pq ` 2p2

“ 2ppq ` pq

“ 2p.

On the other hand, note that our sample space is

S “ tTT, TH,HT,HHu.

The values of P psq and Xpsq for each outcome s P S are listed in the following table:

s TT TH HT HH

P psq q2 pq pq p2

Xpsq 0 1 1 2

Then we observe that our new formula gives the same answer:

ErXs “ XpTT q ¨ P pTT q `XpTHq ¨ P pTHq `XpHT q ¨ P pHT q `XpHHq ¨ P pHHq
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“ 0 ¨ q2 ` 1 ¨ pq ` 1 ¨ pq ` 2 ¨ p2

“ 0q2 ` 2pq ` 2p2

“ 2ppq ` pq

“ 2p.

The reason we got the same answer is because the probability P pX “ 1q can be computed by
summing over all outcomes in the set tX “ 1u “ tTH,HT u:

tX “ 1u “ tTHu Y tHT u

P pX “ 1q “ P pTHq ` P pHT q.

More generally, if X : S Ñ R is any discrete random variable then for any k the probability
P pX “ kq can be expressed as the sum of probabilities P psq over all outcomes s P S such that
Xpsq “ k:

P pX “ kq “
ÿ

sPS:Xpsq“k

P psq.

And since for each k in this sum we have k “ Xpsq it follows that

k ¨ P pX “ kq “ k

¨

˝

ÿ

sPS:Xpsq“k

P psq

˛

‚“
ÿ

sPS:Xpsq“k

k ¨ P psq “
ÿ

sPS:Xpsq“k

Xpsq ¨ P psq.

Finally, summing over all values of k gives the desired proof. In my experience students don’t
like this proof so feel free to skip it if you want. It doesn’t really say anything interesting.

Proof of the Alternate Formula.
ÿ

sPS

Xpsq ¨ P psq “
ÿ

kPSX

ÿ

sPS:Xpsq“k

Xpsq ¨ P psq

“
ÿ

kPSX

ÿ

sPS:Xpsq“k

Xpsq ¨ P psq

“
ÿ

kPSX

ÿ

sPS:Xpsq“k

k ¨ P psq

“
ÿ

kPSX

k ¨

¨

˝

ÿ

sPS:Xpsq“k

P psq

˛

‚

“
ÿ

kPSX

k ¨ P pX “ kq

The reason I am telling you this is because it leads to the most important property of the
expected value.
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Expectation is Linear

Consider an experiment with sample space S. Let X,Y : S Ñ R be any two random
variables on this sample space and let α, β P R be any constants. Then we have

ErαX ` βY s “ α ¨ ErXs ` β ¨ ErY s.

Remark: The study of expected values brings us very close to the subject called “linear
algebra.” This statement just says that expected value is a “linear function” on the
algebra of random variables.

This would be very hard to explain in terms of the old formula ErXs “
ř

k k ¨ P pX “ kq.
However, it becomes almost trivial when we use the new formula ErXs “

ř

sXpsq ¨ P psq.

Proof of Linearity. By definition of the random variable αX ` βY we have

ErαX ` βY s “
ÿ

sPS

pαX ` βY qpsqP psq

“
ÿ

sPS

rαXpsq ` βY psqs ¨ P psq

“
ÿ

sPS

rαXpsqP psq ` βY psqP psqs

“
ÿ

sPS

αXpsqP psq `
ÿ

sPS

βY psqP psq

“ α
ÿ

sPS

XpsqP psq ` β
ÿ

sPS

Y psqP psq

“ α ¨ ErXs ` β ¨ ErY s.

Warning. This theorem says that the expected value preserves addition/subtraction of ran-
dom variables and scaling of random variables by constants. I want to emphasize, however,
that the expected value does not (in general) preserve multiplication of random variables.
That is, for general random variables21 X,Y : S Ñ R we will have

ErXY s ‰ ErXs ¨ ErY s.

In particular, when Y “ X we typically have

ErX2s ‰ ErXs2.

21The important exception is when the random variables X,Y are independent. See below.
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This will be important below when we discuss variance.

To demonstrate that all of this abstraction is worthwhile, here is the good way to compute the
expected value of a binomial random variable. First I’ll give the case n “ 2 as an example.

Expected Value of a Binomial Random Variable (n “ 2). Consider again a coin with
P pHq “ p and P pT q “ q. Suppose the coin is flipped twice and consider the random variables

X1 “

#

1 if 1st flip is H

0 if 1st flip is T
and X2 “

#

1 if 2nd flip is H

0 if 2nd flip is T .

The following table displays the probability of each outcome s P S together with the values of
X1 and X2 and their sum X “ X1 `X2:

s TT TH HT HH

P psq q2 pq pq p2

X1psq 0 0 1 1

X2psq 0 1 0 1

Xpsq “ X1psq `X2psq 0 1 1 2

Observe that the sum X “ X1 ` X2 is just the total number of heads. Thus in order to
compute the expected value ErXs it is enough to compute the expected values ErX1s and
ErX2s and then add them together. And since each random variable Xi only has two possible
values, this is easy to do. For example, here is the pmf for the random variable X1:

k 0 1

P pX1 “ kq P pTT q ` P pTHq “ q2 ` pq “ q P pHT q ` P pHHq “ pq ` p2 “ p.

Then we compute

ErX1s “ 0 ¨ P pX1 “ 0q ` 1 ¨ P pX1 “ 1q “ 0 ¨ q ` 1 ¨ p “ p

and a similar computation gives ErX2s “ p. We conclude that the expected number of heads
in two flips of a coin is

ErXs “ ErX1 `X2s “ ErX1s ` ErX2s “ p` p “ 2p.

Here is the general case.
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Expected Value of a Binomial Random Variable

Consider a coin with P pHq “ p. Suppose the coin is flipped n times and let X be the
number of heads that appear. Then the expected value of X is

ErXs “ np.

Proof. For each i “ 1, 2, . . . , n let us consider the random variable22

Xi “

#

1 if the ith flip is H,

0 if the ith flip is T .

By ignoring all of the other flips we see that P pXi “ 0q “ P pT q “ q and P pXi “ 1q “ P pHq “
p, which implies that

ErXis “ 0 ¨ P pXi “ 0q ` 1 ¨ P pXi “ 1q “ 0 ¨ q ` 1 ¨ p “ p.

The formula ErXis “ p says that (on average) we expect to get p heads on the ith flip. That
sounds reasonable, I guess. Then by adding up the random variables Xi we obtain the total
number of heads:

(total # heads) “
n
ÿ

i“1

(# heads on the ith flip)

X “ X1 `X2 ` ¨ ¨ ¨ `Xn.

Finally, we can use the linearity of expectation to compute the expected number of heads:

ErXs “ ErX1 `X2 ` ¨ ¨ ¨ `Xns

“ ErX1s ` ErX2s ` ¨ ¨ ¨ ` ErXns

“ p` p` ¨ ¨ ¨ ` p
loooooooomoooooooon

n times

“ np.

You may find the same trick useful on Exercise 3.7 below.

22Any random variable with support t0, 1u is called a Bernoulli random variable. Thus we have one more
random variable with a needlessly complicated name.
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2.4 Variance and Standard Deviation

The expected value is useful but it doesn’t tell us everything about a distribution. For example,
consider the following two random variables:

• Roll a fair six-sided die with sides labeled 1, 2, 3, 4, 5, 6 and let X be the number that
shows up.

• Roll a fair six-sided die with sides labeled 3, 3, 3, 4, 4, 4 and let Y be the number that
shows up.

To compute the expected value of X we note that X has support SX “ t1, 2, 3, 4, 5, 6u with
P pX “ kq “ 1{6 for all k P SX . Hence

ErXs “ 1 ¨ P pX “ 1q ` 2 ¨ P pX “ 2q ` ¨ ¨ ¨ ` 6 ¨ P pX “ 6q

“ 1 ¨
1

6
` 2 ¨

1

6
` 3 ¨

1

6
` 4 ¨

1

6
` 5 ¨

1

6
` 6 ¨

1

6
“

21

6
“ 3.5.

And to compute the expected value of Y we note that Y has support SY “ t3, 4u with
P pY “ 3q “ P pY “ 4q “ 1{2. Hence

ErY s “ 3 ¨ P pY “ 3q ` 4 ¨ P pY “ 4q “ 3 ¨
1

2
` 4 ¨

1

2
“

7

2
“ 3.5.

We conclude that X that Y have the same expected value. But they certainly do not have
the same distribution, as we can see in the following line graphs:

We see that both distributions are centered around 3.5 but the distribution of X is more
“spread out” than the distribution of Y . We would like to attach some number to each
distribution to give a measure of this spread, and to verify quantitatively that

spreadpXq ą spreadpY q.
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The Idea of “Spread”

Let X be a random variable with expected value µ “ ErXs, also called the mean of X.
We want to answer the following question:

On average, how far away is X from its mean µ?

The most obvious way to answer this question is to consider the difference X ´ µ. Since µ is
constant we know that Erµs “ µ. Then by using the linearity of expectation we compute the
average value of X ´ µ:

ErX ´ µs “ ErXs ´ Erµs “ µ´ µ “ 0.

Oops. Maybe we should have seen this coming. Since X spends half its time to the right of
µ and half its time to the left of µ it makes sense that the differences cancel out. We can fix
this problem by considering the distance between X and µ, which is the absolute value of the
difference:

|X ´ µ| “ distance between X and µ.

We will define the spread23 of X as the average distance between X and µ:

spreadpXq “ E r|X ´ µ|s .

To see if this is reasonable let’s compute the spread of the random variables X and Y from
above. Unfortunately, the function |X ´ µ| is a bit complicated so we have to go back to the
explicit formula:

E r|X ´ µ|s “
ÿ

sPS

|Xpsq ´ µ| ¨ P psq.

To compute the spread of X we form the following table:

s face 1 face 2 face 3 face 4 face 5 face 6

Xpsq 1 2 3 4 5 6

µ 3.5 3.5 3.5 3.5 3.5 3.5

|Xpsq ´ µ| 2.5 1.5 0.5 0.5 1.5 2.5

P psq 1{6 1{6 1{6 1{6 1{6 1{6

Then we apply the formula to get

E r|X ´ µ|s “ p2.5q
1

6
` p1.5q

1

6
` p0.5q

1

6
` p0.5q

1

6
` p1.5q

1

6
` p2.5q

1

6
“

9

6
“ 1.5.

23Warning: This is not standard terminology. As far as I know there is no standard terminology for this
concept.
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We conclude that, on average, the random variable X has a distance of 1.5 from its mean. To
compute the spread of Y we form the following table:

s face 1 face 2 face 3 face 4 face 5 face 6

Y psq 3 3 3 4 4 4

µ 3.5 3.5 3.5 3.5 3.5 3.5

|Y psq ´ µ| 0.5 0.5 0.5 0.5 0.5 0.5

P psq 1{6 1{6 1{6 1{6 1{6 1{6

Then we apply the formula to get

E r|Y ´ µ|s “ p0.5q
1

6
` p0.5q

1

6
` p0.5q

1

6
` p0.5q

1

6
` p0.5q

1

6
` p0.5q

1

6
“

6p0.5q

6
“ 0.5.

We conclude that, on average, the random variable Y has a distance of 0.5 from its mean. (In
fact, the distance |Y ´ µ| is constantly equal to 0.5.) This confirms our earlier intuition that

1.5 “ spreadpXq ą spreadpY q “ 0.5.

Now the bad news. Even though our definition of “spread” is very reasonable, this definition
is not commonly used. The main reason we don’t use it is because the absolute value function
is not very algebraic. To make the algebra work out more smoothly we prefer to work with
the square of the distance between X and µ:

(distance between X and µ)2 “ |X ´ µ|2 “ pX ´ µq2.

Notice that when we do this the absolute value signs disappear.

Definition of Variance and Standard Deviation

Let X be a random variable with mean µ “ ErXs. We define the variance as the expected
value of the squared distance between X and µ:

VarpXq “ σ2 “ E
“

pX ´ µq2
‰

.

Then because we feel remorse about squaring the distance, we try to correct the situation
by defining the standard deviation σ as the square root of the variance:

σ “
a

VarpXq “
a

E rpX ´ µq2s.
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In general, the standard deviation is bigger than the spread defined above:

spreadpXq ď σ

E r|X ´ µ|s ď
a

E rpX ´ µq2s.

But we prefer it because it has nice theoretical properties and it is easier to compute. For
example, we could compute the standard deviations of X and Y using the same method as
before,24 but there is a quicker way.

Trick for Computing Variance

Let X be a random variable. Then we have

VarpXq “ ErX2s ´ ErXs2.

Proof. Since µ is a constant we have Erµs “ µ and Erµ2s “ µ2. Now the linearity of
expectation gives

VarpXq “ E
“

pX ´ µq2
‰

“ E
“

X2 ´ 2µX ` µ2
‰

“ ErX2s ´ 2µErXs ` µ2

“ ErX2s ´ 2µ ¨ µ` µ2

“ ErX2s ´ µ2

“ ErX2s ´ ErXs2.

Remark: Since variance is always non-negative, this implies in general that

VarpXq “ ErX2s ´ ErXs2 ě 0

ErX2s ě ErXs2.

It follows from this that we have ErX2s “ ErXs2 if and only VarpXq “ 0, which happens if
and only if X is constant (i.e., pretty much never).

Let’s apply this formula to our examples. We already know that ErXs “ 21{6 “ 3.5. In order
to compute ErX2s we use the following general principle.

24Try it!
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Definition of Moments

Let X be a discrete random variable. For each whole number r ě 0 we define the rth
moment of X as the expected value of the rth power Xr. By definition this is

ErXrs “
ÿ

kPSX

kr ¨ P pX “ kq.

To compute the second moment of X we form the following table:

k 1 2 3 4 5 6

k2 1 4 9 16 25 36

P pX “ kq 1{6 1{6 1{6 1{6 1{6 1{6

We find that

ErX2s “ 12 ¨ P pX “ 1q ` 22 ¨ P pX “ 2q ` ¨ ¨ ¨ ` 62 ¨ P pX “ 6q

“ 1 ¨
1

6
` 4 ¨

1

6
` 9 ¨

1

6
` 16 ¨

1

6
` 25 ¨

1

6
` 36 ¨

1

6
“

91

6
.

Then the variance is

σ2X “ VarpXq “ ErX2s ´ ErXs2 “
91

6
´

ˆ

21

6

˙2

“
105

36
“ 2.92

and the standard deviation25 is

σX “
a

VarpXq “

c

105

36
“ 1.707.

The computation for Y is even easier. First we form the table

k 3 4

k2 9 16

P pY “ kq 1{2 1{2

Then we compute the first moment

ErY s “ 3 ¨ P pX “ 3q ` 4 ¨ P pX “ 4q “ 3 ¨
1

2
` 4 ¨

1

2
“

7

2
,

the second moment

ErY 2s “ 32 ¨ P pX “ 3q ` 42 ¨ P pX “ 4q “ 9 ¨
1

2
` 16 ¨

1

2
“

25

2
25We use a subscript on σ when there is more than one random variable under discussion.
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the variance

VarpY q “ ErY 2s ´ ErY s2 “
25

2
´

ˆ

7

2

˙2

“
1

4

and the standard deviation

σY “
a

VarpY q “

c

1

4
“

1

2
“ 0.5.

In summary, let us compare the standard deviations to the spreads we computed above:

1.5 “ spreadpXq ď σX “ 1.707

0.5 “ spreadpY q ď σY “ 0.5.

The standard deviation of X is slightly larger than its spread but we still have

σX ą σY ,

which quantifies our observation that the distribution of X is more “spread out” than the
distribution of Y . We have now discussed the first two moments of a random variable. In
further probability and statistics courses you will consider the entire sequence of moments:

ErXs, ErX2s, ErX3s, ErX4s, . . . .

Under nice circumstances it turns out that knowing this sequence is equivalent to knowing
the probability mass function. But the first two moments will be good enough for us.

To end this section I will collect some useful formulas explaining how expectation and variance
behave with respect to constants.

Useful Formulas

Let X : S Ñ R be any random variable and let α P R be any constant. Then we have

Erαs “ α
ErαXs “ αErXs

ErX ` αs “ ErXs ` α

Varpαq “ 0

VarpαXq “ α2VarpXq
VarpX ` αq “ VarpXq.

We already know these formulas for the expected value; I just included them for comparison.

Proof. For the first statement note that Erαs “ α and Erα2s “ α2. Then we have

Varpαq “ Erα2s ´ Erαs2 “ α2 ´ α2 “ 0.
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For the second statement we have

VarpαXq “ ErpαXq2s ´ ErαXs2

“ Erα2X2s ´ pαErXsq2

“ α2ErX2s ´ α2ErXs2

“ α2
`

ErX2s ´ ErXs2
˘

“ α2VarpXq.

For the third statement note that ErX ` αs “ ErXs ` α. Then we have

VarpX ` αq “ E
”

ppX ` αq ´ ErX ` αsq2
ı

“ E
”

ppX `�αq ´ pErXs ´�αqq
2
ı

“ E
“

pX ´ ErXsq2
‰

“ VarpXq.

The idea behind the first statement is that a constant has no variance. This makes sense from
the line diagram:

The idea behind the third statement is that shifting a distribution to the right doesn’t change
its spread. Here is a picture of the situation:
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After seeing how variance interacts with constants, you might wonder how variance interacts
with addition of random variables:

VarpX ` Y q “ ?

We will discuss this in the next section.

Exercises 3

3.1. Consider a coin with P pHq “ p and P pT q “ q. Flip the coin until the first head shows
up and let X be the number of flips you made. The probability mass function and support of
this geometric random vabiable are given by

P pX “ kq “ qk´1p and SX “ t1, 2, 3, . . .u.

(a) Use the geometric series 1` q ` q2 ` ¨ ¨ ¨ “ p1´ qq´1 to show that
ÿ

kPSX

P pX “ kq “ 1.

(b) Differentiate the geometric series to get 0` 1` 2q ` 3q2 ` ¨ ¨ ¨ “ p1´ qq´2 and use this
series to show that

ErXs “
ÿ

kPSX

k ¨ P pX “ kq “
1

p
.

(c) Application: Start rolling a fair 6-sided die. On average, how long do you have to wait
until you see “1” for the first time?
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3.2. There are 2 red balls and 4 green balls in an urn. Suppose you grab 3 balls without
replacement and let X be the number of red balls you get.

(a) What is the support of this random variable?

(b) Draw a picture of the probability mass function fXpkq “ P pX “ kq.

(c) Compute the expected value ErXs. Does the answer make sense?

3.3. Roll a pair of fair 6-sided dice and consider the following random variables:

X “ the number that shows up on the first roll,

Y “ the number that shows up on the second roll.

(a) Write down all elements of the sample space S.

(b) Compute the probability mass function for the sum fX`Y pkq “ P pX`Y “ kq and draw
the probability histogram.

(c) Compute the expected value ErX ` Y s in two different ways.

(d) Compute the probability mass function for the difference fX´Y pkq “ P pX´Y “ kq and
draw the probability histogram.

(e) Compute the expected value ErX ´ Y s in two different ways.

(f) Compute the probability mass function for the absolute value of the difference

f|X´Y |pkq “ P p|X ´ Y | “ kq

and draw the probability histogram.

(e) Compute the expected value E r|X ´ Y |s. This time there is only one way to do it.

3.4. Let X be a random variable satisfying

ErX ` 1s “ 3 and ErpX ` 1q2s “ 10.

Use this information to compute the following:

VarpX ` 1q, ErXs, ErX2s and VarpXq.

3.5. Let X be a random variable with mean ErXs “ µ and variance VarpXq “ σ2 ‰ 0.
Compute the mean and variance of the random variable Y defined by

Y “
X ´ µ

σ
.

3.6. Let X be the number of strangers you must talk to until you find someone who shares
your birthday. (Assume that each day of the year is equally likely and ignore February 29.)
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(a) Find the probability mass function P pX “ kq.

(b) Find the expected value µ “ ErXs.

(c) Find the cumulative mass function P pX ď kq. Hint: If X is a geometric random variable
with pmf P pX “ kq “ qk´1p, use the geometric series to show that

P pX ď kq “ 1´ P pX ą kq “ 1´
8
ÿ

i“k`1

qi´1p “ 1´ qk.

(d) Use part (c) to find the probability P pµ´ 50 ď X ď µ` 50q that X falls within ˘50 of
the expected value. Hint:

P pµ´ 50 ď X ď µ` 50q “ P pX ď µ` 50q ´ P pX ď µ´ 50´ 1q.

3.7. I am running a lottery. I will sell 10 tickets, each for a price of $1. The person who buys
the winning ticket will receive a cash prize of $5.

(a) If you buy one ticket, what is the expected value of your profit?

(b) If you buy two tickets, what is the expected value of your profit?

(c) If you buy n tickets (0 ď n ď 10), what is the expected value of your profit? Which
value of n maximizes your expected profit?

[Remark: Profit equals prize money minus cost of the tickets.]

3.8. Consider a coin with P pHq “ p and P pT q “ q. Flip the coin n times and let X be the
number of heads you get. In this problem you will give a bad proof that ErXs “ np.

(a) Use the formula
`

n
k

˘

“ n!
k!pn´kq! to show that k

`

n
k

˘

“ n
`

n´1
k´1

˘

.

(b) Complete the following computation:

ErXs “
n
ÿ

k“0

k ¨ P pX “ kq

“

n
ÿ

k“1

k ¨ P pX “ kq

“

n
ÿ

k“1

k

ˆ

n

k

˙

pkqn´k

“

n
ÿ

k“1

k

ˆ

n

k

˙

pkqn´k

“

n
ÿ

k“1

n

ˆ

n´ 1

k ´ 1

˙

pkqn´k

“ ¨ ¨ ¨
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2.5 Covariance

Let us try to compute the variance of our favorite binomial random variable.

Example. Let X be the number of heads of obtained in n flips of a coin, where P pHq “ p
and P pT q “ q. We already know that the first moment is ErXs “ np. In order to compute the
variance we also need to know the second moment ErX2s. Let us try some small examples.
If n “ 2 then we have the following table:

k 0 1 2

k2 0 1 4

P pX “ kq q2 2qp p2

Thus the second moment is

ErX2s “ 02 ¨ P pX “ 0q ` 12 ¨ P pX “ 1q ` 22 ¨ P pX “ 2q

“ 0 ¨ q2 ` 1 ¨ 2qp` 4 ¨ p2

“ 2ppq ` 2pq

and the variance is

VarpXq “ ErX2s ´ ErXs2 “ 2ppq ` 2pq ´ p2pq2 “ 2ppq `��2p´��2pq “ 2pq.

If n “ 3 then we have the following table:

k 0 1 2 3

k2 0 1 4 9

P pX “ kq q3 3qp2 3q2p p3

Then since p` q “ 1 the second moment is

ErX2s “ 01 ¨ P pX “ 0q ` 11 ¨ P pX “ 1q ` 22 ¨ P pX “ 2q ` 33 ¨ P pX “ 3q

“ 0 ¨ q3 ` 1 ¨ 3q2p` 4 ¨ 3qp2 ` 9 ¨ p3

“ 3ppq2 ` 4qp` 3p2q

“ 3ppq ` 3pqpq ` pq

“ 3ppq ` 3pq

and the variance is

VarpXq “ ErX2s ´ ErXs2 “ 3ppq ` 3pq ´ p3pq2 “ 3ppq `��3p´��3pq “ 3pq.

At this point we can guess the general formula.
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Variance of a Binomial Random Variable

Consider a coin with P pHq “ p and P pT q “ q. Suppose the coin is flipped n times and
let X be the number of heads that appear. Then the variance of X is

VarpXq “ npq.

Let’s see if we can prove it.

The Bad Way. The pmf of a binomial random variable is

P pX “ kq “

ˆ

n

k

˙

pkqn´k.

With a lot of algebraic manipulations, one could show that

ErX2s “

n
ÿ

k“0

k2 ¨ P pX “ kq

“

n
ÿ

k“0

k2 ¨

ˆ

n

k

˙

pkqn´k

“ (some tricks)

“ nppq ` npqpq ` pqn´2

“ nppq ` npq.

But you know from experience that this will not be fun. Then we conclude that

VarpXq “ ErX2s ´ ErXs2 “ nppq ` npq ´ pnpq2 “ nppq ´��np`��npq “ npq.

Surely there is a better way.

The Good Way. As before, we will express the binomial random variable X as a sum of
Bernoulli random variables. Define

Xi “

#

1 if the ith flip is H,

0 it the ith flip is T .

The support of this random variable is SXi “ t0, 1u with P pXi “ 0q “ q and P pXi “ 1q “ p.
Therefore we have

ErXis “ 0 ¨ P pXi “ 0q ` 1 ¨ P pXi “ 1q “ 0 ¨ q ` 1 ¨ p “ p
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and
ErX2

i s “ 02 ¨ P pXi “ 0q ` 12 ¨ P pXi “ 1q “ 0 ¨ q ` 1 ¨ p “ p,

and hence
VarpXq “ ErX2

i s ´ ErXis
2 “ p´ p2 “ pp1´ pq “ pq.

Since Xi is the number of heads obtained on the ith flip, the sum of these gives the total
number of heads:

(total # of heads) “
n
ÿ

i“1

(# heads on the ith flip)

X “ X1 `X2 ` ¨ ¨ ¨ `Xn.

Finally, we apply the variance to both sides of the equation:

VarpXq “ VarpX1 `X2 ` ¨ ¨ ¨ `Xnq

“ VarpX1q `VarpX2q ` ¨ ¨ ¨ `VarpXnq(?)

“ pq ` pq ` ¨ ¨ ¨ ` pq
loooooooooomoooooooooon

n times

“ npq.

This computation is correct, but I still haven’t explained why the step (?) is true.

Question. Why was it okay to replace the variance of the sum VarpX1 ` ¨ ¨ ¨ `Xnq with the
sum of the variances VarpX1q ` ¨ ¨ ¨ `VarpXnq?

Answer. This only worked because the random variables Xi and Xj are independent of
each other. In general, the variance of a sum is not equal to the sum of the variances. More
specifically, if X,Y are random variables on the same experiment then we will find that

VarpX ` Y q “ VarpXq `VarpY q ` (some junk),

where the junk is some number measuring the “correlation” between X and Y . When X and
Y are independent this number will be zero.

In the next few sections we will make the concepts of “correlation” and “independence” more
precise. First let’s find a formula for the junk. To keep track of the different expected values
we will write

µX “ ErXs and µY “ ErY s.

Since the expected value is linear we have

ErX ` Y s “ ErXs ` ErY s “ µX ` µY .
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Now we compute the variance of X ` Y directly from the definition:

VarpX ` Y q “ E
”

rpX ` Y q ´ pµX ` µY qs
2
ı

“ E
”

rpX ´ µXq ` pY ´ µY qs
2
ı

“ E
“

pX ´ µXq
2 ` pY ´ µY q

2 ` 2pX ´ µXqpY ´ µY q
‰

“ E
“

pX ´ µXq
2
‰

` E
“

pY ´ µY q
2
‰

` 2E rpX ´ µXqpY ´ µY qs

“ VarpXq `VarpY q ` 2 ¨ E rpX ´ µXqpY ´ µY qs

This motivates the following definition.

Definition of Covariance

Let X,Y : S Ñ R be random variables on the same experiment, with means µX “ ErXs
and µY “ ErY s. We define their covariance as

CovpX,Y q “ E rpX ´ µXqpY ´ µY qs .

Equivalently, the covariance satisfies the following equation:

VarpX ` Y q “ VarpXq `VarpY q ` 2 ¨ CovpX,Y q.

Here are some basic observations.

• Since pX ´ µXqpY ´ µY q “ pY ´ µY qpX ´ µXq we have

CovpX,Y q “ E rpX ´ µXqpY ´ µY qs “ E rpY µY qpX ´ µXqs “ CovpY,Xq.

In words: The covariance is symmetric.

• For any random variable X we have

CovpX,Xq “ E rpX ´ µXqpX ´ µXqs “ E
“

pX ´ µXq
2
‰

“ VarpXq.

In words: The variance of X equals the covariance of X with itself.

• For any random variable X and constant α we have µα “ α and hence

CovpX,αq “ E rpX ´ µXqpα´ αqs “ Er0s “ 0.

In words: The covariance of anything with a constant is zero.
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Recall that the most important property of the expected value is its linearity:

ErαX ` βY s “ αErXs ` βErY s.

We also observed that the variance is not linear. Now we are ready to state the important
property that variance does satisfy.

Covariance is Bilinear

Let X,Y, Z : S Ñ R be random variables on a sample space S and let α, β P R be any
constants. Then we have

CovpαX ` βY, Zq “ αCovpX,Zq ` βCovpY,Zq

and
CovpX,αY ` βZq “ αCovpX,Y q ` βCovpY,Zq.

Remark: If you have taken linear algebra then you will recognize that the covariance of
random variables behaves very much like the dot product of vectors.

The proof is not difficult but it will be easier to write down after I give you a trick.

Trick for Computing Covariance

Let X,Y be random variables on the same experiment. Then we have

CovpX,Y q “ ErXY s ´ ErXs ¨ ErY s.

Proof. Define µX “ ErXs and µY “ ErY s. We will use the linearity of expectation and the
fact that µX and µY are constants:

CovpX,Y q “ ErpX ´ µXqpY ´ µY qs

“ ErXY ´ µXY ´ µYX ` µXµY s

“ ErXY s ´ ErµXY s ´ ErµYXs ` ErµXµY s

“ ErXY s ´ µXErY s ´ µYErXs ` µXµY

“ ErXY s ´ µXµY ´����µY µX `����µXµY

“ ErXY s ´ µXµY

“ ErXY s ´ ErXs ¨ ErY s.
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Proof of Bilinearity. I will only prove the first statement. Then the second statement
follows from symmetry. According to the trick, the covariance CovpαX ` βY, Zq equals

E rpαX ` βY qZs ´ ErαX ` βY s ¨ ErZs

“ E rαXZ ` βY Zs ´ pαErXs ` βErY sq ¨ ErZs

“ pαErXZs ` βErY Zsq ´ αErXs ¨ ErZs ´ βErY s ¨ ErZs

“ α pErXZs ´ ErXs ¨ ErZsq ` β pErY Zs ´ ErY s ¨ ErZsq

“ αCovpX,Zq ` βCovpY, Zq.

That’s more than enough proofs for today. Let me finish this section by computing an example.

Example of Covariance. Suppose a coin is flipped twice. Consider the random variables:

X “ tnumber of heads on 1st flipu,

Y “ tnumber of heads on 2nd flipu,

Z “ ttotal number of headsu.

Our intuition tells us that X and Y are independent, so we expect that CovpX,Y q “ 0.
Our intuition also tells us that X and Z are not independent. In fact, we expect that
CovpX,Zq ą 0 because an increase in X causes an increase in Z. In this case we say that X
and Z are “positively correlated.”

To compute the covariances we need to compute the expected values of X, Y , Z, XY , XZ
and Y Z. Since is it difficult to compute the probability mass functions for XY,XZ, Y Z we
will list the value of each random variable for each element of the sample space:

s TT TH HT HH

Xpsq 0 0 1 1
Y psq 0 1 0 1
Zpsq 0 1 1 2

XpsqY psq 0 0 0 1
XpsqZpsq 0 0 1 2
Y psqZpsq 0 1 0 2

P psq q2 qp qp p2

Next we compute the expected values:

ErXs “ 0q2 ` 0qp` 1qp` 1p2 “ ppq ` pq “ p,

ErY s “ 0q2 ` 1qp` 0qp` 1p2 “ ppq ` pq “ p,
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ErZs “ 0q2 ` 1qp` 1qp` 2p2 “ 2ppq ` pq “ 2p,

ErXY s “ 0q2 ` 0qp` 0qp` 1p2 “ p2,

ErXZs “ 0q2 ` 0qp` 1qp` 2p2 “ ppq ` 2pq

ErY Zs “ 0q2 ` 1qp` 0qp` 2p2 “ ppq ` 2pq

And then we compute the covariances:

CovpX,Y q “ ErXY s ´ ErXs ¨ ErY s “ p2 ´ p ¨ p “ 0,

CovpX,Zq “ ErXZs ´ ErXs ¨ ErZs “ ppq ` 2pq ´ p ¨ p2pq “ pq,

CovpY,Zq “ ErY Zs ´ ErY s ¨ ErZs “ ppq ` 2pq ´ p ¨ p2pq “ pq.

As expected, we find that CovpX,Y q “ 0 and CovpX,Zq “ CovpY,Zq “ pq ą 0, at least when
the probabilities of heads and tails are both nonzero.

Finally, observe that Z “ X`Y and recall that we already know the variance of the Bernoulli
random variable X:

CovpX,Xq “ VarpXq “ pq.

Thus we can verify the bilinearity of covariance:

CovpX,Zq “ CovpX,X ` Y q “ CovpX,Xq ` CovpX,Y q “ pq ` 0 “ pq.

2.6 Joint Distributions and Independence

In the previous example we computed the expected value ErXY s by summing over all elements
of the sample space:

ErXY s “
ÿ

sPS

pXY qpsqP psq “
ÿ

sPS

XpsqY psqP psq.

Alternatively, we could write this as a sum over all possible values of X and Y . Let SX and
SY be the supports of these random variables. Then for all k P SX and ` P SY we have

P pX “ k and Y “ `q “
ÿ

P psq,

where the sum is over all outcomes s P S such that Xpsq “ k and Y psq “ `. By breaking up
the original sum over different values of k and ` we obtain

ErXY s “
ÿ

kPSX ,`PSY

k ¨ ` ¨ P pX “ k and Y “ `q.

The joint probabilities P pX “ k and Y “ `q tell us everything there is to know about the
relationship between the random variables X and Y . The collection of all such numbers is
called the joint probability mass function.
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Joint and Marginal pmf’s

Let X,Y : S Ñ R be discrete random variables with support SX , SY Ď R. Recall that
the probability mass functions of X and Y are defined by

fXpkq “

#

P pX “ kq if k P SX ,

0 if k R SX ,
and fY p`q “

#

P pY “ `q if ` P SY ,

0 if ` R SY .

We define the joint probability mass function fXY : R2 Ñ R as follows:

fXY pk, `q “ P pX “ k, Y “ `q

“ P ptX “ ku X tY “ `uq

“ P pX “ k and Y “ `q.

The function fXY takes any two real numbers k, ` to a non-negative number fXY pk, `q.
By summing over all values of Y and using the Law of Total Probability we recover the
marginal pmf of X:

tX “ ku “
ď

`PSY

tX “ ku X tY “ `u

P pX “ kq “
ÿ

`PSY

P ptX “ ku X tY “ `uq

fXpkq “
ÿ

`PSY

fXY pk, `q

Similarly, we recover the marginal pmf of Y by summing over the possible values of X:

fY p`q “
ÿ

kPSX

fXY pk, `q.

Summing over all possible values of X and Y gives the number 1, as it should:

ÿ

kPSX ,`PSY

fXY pk, `q “
ÿ

kPSX

fXpkq “
ÿ

`PSY

fY p`q “ 1.

For random variables X,Y of finite support, we will record their joint pmf with a rectangular
table as follows:
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We record the joint probabilities fXY pk, `q inside the table and we record the marginal prob-
abilities fXpkq and fY p`q in the margins.26 Note that each marginal probability equals the
sum of the joint probabilities in its row or column.

Example. For example, consider a coin with P pHq “ 1{3. Flip the coin twice and let

X “ p# heads on the 1st flipq,

Y “ p# heads on the 1st flipq,

Z “ ptotal # headsq “ X ` Y.

Our intuition tells us that the events tX “ ku and tY “ `u are independent for all possible
values of k and `. Therefore we can obtain the joint probabilities by multiplying the marginal
probabilities:

P ptX “ ku X tY “ `uq “ P pX “ kq ¨ P pY “ `q

fXY pk, `q “ fXpkq ¨ fY p`q.

Since the marginal probabilities are fXp0q “ fY p0q “ 2{3 and fXp1q “ fY p1q “ 1{3, we obtain
the following table:

26That’s why they’re called “marginal.”
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Observe that the four entries in the table sum to 1 and that the two entries in each row and
column sum to the displayed marginal probabilities. We can use this table to compute any
probability related to X and Y . For example, the event tX ď Y u corresponds to the following
cells of the table:

By adding the probabilities in these cells we obtain

P pX ď Y q “
4

9
`

2

9
`

1

9
“

7

9
“ 77.8%.

Now let’s move on to the joint distribution of X and Z “ X`Y . Each event tX “ kuXtZ “ `u
corresponds to at most one cell of the table above and two such events (when k, ` “ 0, 1 and
when k, ` “ 0, 2) are empty. Here is the joint pmf table:
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This time we observe that the joint probabilities are not just the products of the marginal
probabilities. For example, the events tX “ 0u and tZ “ 0u are not independent because

P ptX “ 0u X tZ “ 0uq “
4

9
‰

ˆ

2

3

˙ˆ

4

9

˙

“ P pX “ 0q ¨ P pZ “ 0q.

In such a case we say the random variables X and Z are not independent.

Independent Random Variables

Let X,Y : S Ñ R be random variables with joint probability mass function fXY pk, `q.
We say that X and Y are independent random variables when the joint pmf equals the
product of the marginal pmf’s:

fXY pk, `q “ fXpkq ¨ fY p`q

P ptX “ ku X tY “ `uq “ P pX “ kq ¨ P pY “ `q.

Equivalently, we say that the random variables X and Y are independent when the
events tX “ ku and tY “ `u are independent for all values of k and `.

We have observed previously that independent random variables have zero covariance. Now
that we have an official definition of independence I can explain why this is true. Recall from
the beginning of this section that the expected value of XY is given by

ErXY s “
ÿ

kPSX ,`PSY

k ¨ ` ¨ fXY pk, `q.

More generally, we make the following definition.
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Definition of Mixed Moments

Let X,Y : S Ñ R be discrete random variables with joint pmf fXY pk, `q. Then for all
whole numbers r ě 0 and s ě 0 we define the mixed moment:

ErXrY ss “
ÿ

kPSX ,`PSY

kr ¨ `s ¨ fXY pk, `q.

In the case that X and Y are independent, then the mixed moments are just the products of
the moments of X and Y . That is, if X and Y are independent then for all r, s ě 0 we have

ErXrY ss “ ErXrs ¨ ErY ss.

Proof. Let us assume that X and Y are independent so that fXY pk, `q “ fXpkq ¨ fY p`q for all
values of k and `. Then by definition of moments and mixed moments we have

ErXrs ¨ ErY ss “

˜

ÿ

kPSX

kr ¨ fXpkq

¸˜

ÿ

`PSY

`s ¨ fY p`q

¸

“
ÿ

kPSX

ÿ

`PSY

kr ¨ `s ¨ fXpkq ¨ fY p`q

“
ÿ

kPSX ,`PSY

kr ¨ `s ¨ fXY pk, `q

“ ErXrY ss.

In the special case that r “ 1 and s “ 1 we obtain the following important result.

Independent Implies Zero Covariance

Let X,Y : S Ñ R be independent random variables, so that fXY pk, `q “ fXpkq ¨ fY p`q.
Then from the previous discussion we have

ErXY s “ ErXs ¨ ErY s

and it follows that the covariance is zero:

CovpX,Y q “ ErXY s ´ ErXs ¨ ErY s “ 0.
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The converse result, unfortunately, is not true. In the exercises below you will see an example
of two random variables X,Y that are not independent, yet they still satisfy CovpX,Y q “ 0.

Let me end the section by discussing a more interesting example.

More Interesting Example. Consider an urn containing 3 red balls, 2 white balls and 1
blue ball. Suppose that 3 balls are drawn from the urn with replacement and let

R “ p# of red balls you getq,

W “ p# of white balls you getq.

We can think of each draw as the roll of a die with three sides labeled tr, w, bu, where the
sides have the following probabilities:

P pside rq “ 3{6,

P pside wq “ 2{6,

P pside bq “ 1{6.

If k red balls and ` white balls are drawn, then we know that 3 ´ k ´ ` blue balls are also
drawn. Thus the joint pmf of R and W is given by the multinomial distribution:

fRW pk, `q “ P pR “ k,W “ `q “

ˆ

3

k, `, 3´ k ´ `

˙ˆ

3

6

˙k ˆ2

6

˙`ˆ1

6

˙3´k´`

.

Recall that the multinomial coefficients are defined by

ˆ

3

k, `, 3´ k ´ `

˙

“

#

3!
k!`!p3´k´`q! if k, ` ě 0 and k ` ` ď 3,

0 otherwise.

Thus we have the following table:

R zW 0 1 2 3

0 1
216

6
216

12
216

8
216

1
8

1 9
216

36
216

36
216 0 3

8

2 27
216

54
216 0 0 3

8

3 27
216 0 0 0 1

8

8
27

12
27

6
27

1
27
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These random variables are certainly not independent because, for example, the joint proba-
bility fRW p3, 3q “ 0 is not equal to the product of the marginal probabilities fRp3q “ 1{8 and
fW p3q “ 1{27. It it worth noting that each of R and W has a binomial distribution. Indeed,
for the event R we can view each roll of the die as a coin flip where “heads” “ “red” and
“tails” “ “not red.” Since P predq “ 1{2 we conclude that

fXpkq “ P pX “ kq “

ˆ

3

k

˙ˆ

1

2

˙k ˆ1

2

˙3´k

.

Similarly, we have

fY p`q “ P pW “ `q “

ˆ

3

`

˙ˆ

1

3

˙k ˆ2

3

˙3´`

.

Since we know the expected value and variance of a binomial,27 this implies that

ErRs “ 3 ¨
1

2
, VarpRq “ 3 ¨

1

2
¨

1

2
, ErW s “ 3 ¨

1

3
, VarpW q “ 3 ¨

1

3
¨

2

3
.

Now let us compute the covariance of R and W . Of course this can be done directly from the
table by using the formula

ErRW s “
3
ÿ

k,`“0

k ¨ ` ¨ fRW pk, `q.

Then we would compute CovpR,W q “ ErRW s´ErRs ¨ErW s. But there is a faster way. Note
that the sum R`W is just the number of “red or white balls.” If we think of “heads” as “red
or white” and “tails” as “blue” then we see that R `W is a binomial random variable with
P pHq “ 5{6 and P pT q “ 1{6. Hence the variance is

VarpR`W q “ 3 ¨
5

6
¨

1

6
“

15

36
.

Finally, we conclude that

VarpRq `VarpW q ` 2 ¨ CovpR,W q “ VarpR`W q

2 ¨ CovpR,W q “ VarpR`W q ´VarpRq ´VarpW q

2 ¨ CovpR,W q “
15

36
´

3

2
´

3

3
2 ¨ CovpR,W q “ ´1

CovpR,W q “ ´1{2.

This confirms the fact that R and W are not independent. Since the covariance is negative
we say that R and W are “negatively correlated.” This means that as R goes up, W has a
tendency to go down, and vice versa.

27Expected number of heads in n flips of a coin is n ¨ P pHq. The variance is n ¨ P pHq ¨ P pT q.
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2.7 Correlation and Linear Regression

I have mentioned the word “correlation” several times. Now it’s time to give the formal
definition. If two random variables X,Y : S Ñ R are independent, we have seen that their
covariance is zero. Indeed, if the joint pmf factors as fXY pk, `q “ fXpkq ¨fY p`q then the mixed
moment ErXY s factors as follows:

ErXY s “
ÿ

k,`

k ¨ ` ¨ fXY pk, `q

“
ÿ

k,`

k ¨ ` ¨ fXpkq ¨ fY p`q

“
ÿ

k

ÿ

`

k ¨ ` ¨ fXpkq ¨ fY p`q

“

˜

ÿ

k

k ¨ fXpkq

¸

¨

˜

ÿ

`

` ¨ fY p`q

¸

“ ErXs ¨ ErY s.

Thus we have CovpX,Y q “ ErXY s ´ ErXs ¨ ErY s “ 0. The converse statement is not
true. That is, there exist non-independent random variables X,Y with CovpX,Y q “ 0.
Nevertheless, we still think of the covariance CovpX,Y q as some kind of measure of “non-
independence” or “correlation.” If CovpX,Y q ą 0 then we say that X and Y are positively
correlated. This means that as X increases, Y has a tendency to increase, and vice versa. If
CovpX,Y q ă 0 we say that X and Y are negatively correlated, which means that X and Y
have a tendency to move in opposite directions.

Since the covariance can be arbitrarily large, we sometimes prefer to use a standardized mea-
sure of correlation that can only take values between ´1 and 1. The definition is based on the
following general fact from linear algebra.

Cauchy-Schwarz Inequality

For all random variables X,Y : S Ñ R we have

CovpX,Y q ¨ CovpX,Y q ď CovpX,Xq ¨ CovpY, Y q

CovpX,Y q2 ď VarpXq ¨VarpY q.

Then taking the square root of both sides gives

|CovpX,Y q| ď
a

VarpXq ¨
a

VarpY q “ σX ¨ σY .
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Proof. For any constant α P R we know that the variance of X ´ αY is non-negative:

VarpX ´ αY q ě 0.

On the other hand, the bilinearity and symmetry of covariance tell us that

VarpX ´ αY q “ CovpX ´ αY,X ´ αY q

“ CovpX,Xq ´ αCovpX,Y q ´ αCovpY,Xq ` α2CovpY, Y q

“ CovpX,Xq ´ 2αCovpX,Y q ` α2CovpY, Y q.

Combining these two facts gives

0 ď CovpX,Xq ´ 2αCovpX,Y q ` α2CovpY, Y q.

Finally, since this inequality is true for all values of α, we can substitute28

α “
CovpX,Y q

CovpY, Y q

to obtain

0 ď CovpX,Xq ´ 2

ˆ

CovpX,Y q

CovpY, Y q

˙

CovpX,Y q `

ˆ

CovpX,Y q

CovpY, Y q

˙2

CovpY, Y q

“ CovpX,Xq ´ 2
CovpX,Y q2

CovpY, Y q
`

CovpX,Y q2

CovpY, Y q

“ CovpX,Xq ´
CovpX,Y q2

CovpY, Y q

and hence

0 ď CovpX,Xq ´
CovpX,Y q

CovpY, Y q

CovpX,Y q2

CovpY, Y q
ď CovpX,Xq

CovpX,Y q2 ď CovpX,Xq ¨ CovpY, Y q.

Alternatively, we can write the Cauchy-Schwarz inequality as

´σX ¨ σY ď CovpX,Y q ď σX ¨ σY ,

which implies that

´1 ď
CovpX,Y q

σX ¨ σY
ď 1.

This quantity has a special name.

28Here we assume that CovpY, Y q “ VarpY q ‰ 0. If VarpY q “ 0 then Y is a constant and both sides of the
Cauchy-Schwarz inequality are zero.
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Definition of Correlation

For any29 random variables X,Y : S Ñ R we define the coefficient of correlation:

ρXY “
CovpX,Y q

a

VarpXq ¨
a

VarpY q
“

CovpX,Y q

σX ¨ σY
.

From the above remarks, we always have

´1 ď ρXY ď 1.

What is this good for? Suppose that you want to measure the relationship between two
random numbers associated to an experiment:

X,Y : S Ñ R.

If you perform this experiment many times then you will obtain a sequence of pairs of numbers

px1, y1q, px2, y2q, px3, y3q, . . .

which can be plotted in the x, y-plane:

It turns out that these data points will all fall on a (non-horizontal) line precisely when
ρXY “ ˘1. Furthermore, this line has positive slope when ρXY “ `1 and negative slope when
ρXY “ ´1. To prove one direction of this statement, suppose that X and Y are related by
the linear equation

Y “ αX ` β

29We assume that X and Y are not constant, so that σX ‰ 0 and σY ‰ 0. If either of X or Y is constant
then we will say that ρXY “ 0.
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for some constants α, β P R with α ‰ 0. Then we have

VarpY q “ VarpαX ` βq “ α2VarpXq

and

CovpX,Y q “ CovpX,αX ` βq

“ αCovpX,Xq ` CovpX,βq

“ αCovpX,Xq ` 0

“ αVarpXq.

It follows from this that

ρXY “
αVarpXq

a

VarpXq ¨
a

α2VarpXq
“

α

|α|
“

#

1 if α ą 0,

´1 if α ă 0.

If ρXY ‰ ˘1 then our data points will not fall exactly on a line. In this case, we might be
interested in finding a line that is still a good fit for our data. For physical reasons we want
this line to pass through the center of mass, which has coordinates x “ µX “ ErXs and
y “ µY “ ErY s. Our goal is to find the slope of this line:

But now physics is no help because any line through the center of mass is balanced with
respect to the probability mass distribution. To compute the slope we need to come up with
some other definition of “best fit.” Here are the two most popular definitions.
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Least Squares Linear Regression

Consider two random variables X,Y : S Ñ R and consider a line in the X,Y -plane that
passes through the center of mass pµX , µY q. Then:

• The line that minimizes the variance the Y -coordinate has slope

ρXY ¨
σY
σX

“
CovpX,Y q

σ2X
“

CovpX,Y q

VarpXq
.

We call this the linear regression of Y onto X.

• The line that minimizes the variance the X-coordinate has slope

ρXY ¨
σX
σY

“
CovpX,Y q

σ2Y
“

CovpX,Y q

VarpY q
.

We call this the linear regression of X onto Y .

In either case, we observe that the slope of the best fit line is negative/zero/positive
precisely when the correlation ρXY is negative/zero/positive.

In terms of our random sample of data points, the linear regression of Y onto X minimizes
the sum of the squared vertical errors, as in the following picture:

Since we know the slope and one point on the line, we can compute the equation of the line
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as follows:

slope “
y ´ µY
x´ µX

“ ρXY ¨
σY
σX

y ´ µY “ ρXY ¨
σY
σX
px´ µXq

y “ µY ` ρXY ¨
σY
σX
px´ µXq.

Similarly, the linear regression of X onto Y minimizes the sum of the squared horizontal
errors. I won’t prove either of these facts right now. Hopefully the ideas will make more
sense after we discuss the concept of “sampling” in the third section of the course.

In either case, the coefficient of correlation ρXY is regarded as a measure of how closely the
data is modeled by its regression line. In fact, we can interpret the number 0 ď |ρXY | ď 1 as
some measure of the “linearity” between X and Y :

|ρXY | “ how linear is the relationship between X and Y ?

The value |ρXY | “ 1 means that X and Y are completely linearly related and the value
ρXY “ 0 means that X and Y are not at all linearly related. It is important to note, however,
that the correlation coefficient ρXY only detects linear relationships between X and Y . It
could be the case that X and Y have some complicated non-linear relationship while still
having zero correlation. Here is a picture from Wikipedia illustrating the possibilities:

Exercises 4

4.1. I am running a lottery. I will let you flip a fair coin until you get heads. If the first head
shows up on the k-th flip I will pay you rk dollars.

(a) Compute your expected winnings when r “ 1.
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(b) Compute your expected winnings when r “ 1.5.

(c) Compute your expected winnings when r “ 2. Does this make any sense? How much
would you be willing to pay me to play this game?

[Moral of the Story: The expected value is not always meaningful.]

4.2. I am running a lottery. I will sell 50 million tickets, 5 million of which will be winners.

(a) If you purchase 10 tickets, what is the probability of getting at least one winner?

(b) If you purchase 15 tickets, what is the probability of getting at least one winner?

(c) If you purchase n tickets, what is the probability of getting at least one winner?

(d) What is the smallest value of n such that your probability of getting a winner is greater
than 50%? What is the smallest value of n that gives you a 95% chance of winning?

[Hint: If n is small, then each ticket is approximately a coin flip with P pHq “ 1{10. In other
words, for small values of n we have the approximation

ˆ

45, 000, 000

n

˙

{

ˆ

50, 000, 000

n

˙

« p9{10qn.s

4.3. Flip a fair coin 3 times and let

X “ “number of heads squared, minus the number of tails.”

(a) Write down a table showing the pmf of X.

(b) Compute the expected value µ “ ErXs.

(c) Compute the variance σ2 “ VarpXq.

(d) Draw the line graph of the pmf. Indicate the values of µ´ σ, µ, µ` σ in your picture.

4.4. Let X and Y be random variables with supports SX “ t1, 2u and SY “ t1, 2, 3, 4u, and
with joint pmf given by the formula

fXY pk, `q “ P pX “ k, Y “ `q “
k ` `

32
.

(a) Draw the joint pmf table, showing the marginal probabilities in the margins.

(b) Compute the following probabilities directly from the table:

P pX ą Y q, P pX ď Y q, P pY “ 2Xq, P pX ` Y ą 3q, P pX ` Y ď 3q.

(c) Use the marginal distributions to compute ErXs,VarpXq and ErY s,VarpY q.
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(d) Use the table to compute the pmf of XY . Use this to compute ErXY s and CovpX,Y q.

(e) Compute the correlation coefficient:

ρXY “
CovpX,Y q

σX ¨ σY
.

Are the random variables X,Y independent? Why or why not?

4.5. Let X and Y be random variables with the following joint distribution:

XzY ´1 0 1

´1 0 0 1{4

0 1{2 0 0

1 0 0 1{4

(a) Compute the numbers ErXs,VarpXq and ErY s,VarpY q.

(b) Compute the expected value ErXY s and the covariance CovpX,Y q.

(c) Are the random variables X,Y independent? Why or why not?

[Moral of the Story: Uncorrelated does not always mean independent.]

4.6. Roll a fair 6-sided die twice. Let X be the number that shows up on the first roll and
let Y be the number that shows up on the second roll. You may assume that X and Y are
independent.

(a) Compute the covariance CovpX,Y q.

(b) Compute the covariance CovpX,X ` Y q.

(c) Compute the covariance CovpX, 2X ` 3Y q.

4.7. Let X1 and X2 be independent samples from a distribution with the following pmf:

k 0 1 2

fpkq 1{4 1{2 1{4

(a) Draw the joint pmf table of X1 and X2.

(b) Use your table to compute the pmf of X1 `X2.

(c) Compute the variance VarpX1 `X2q in two different ways.
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4.8. Each box of a certain brand of cereal comes with a toy inside. If there are n possible
toys and if the toys are distributed randomly, how many boxes do you expect to buy before
you get them all?

(a) Assuming that you already have ` of the toys, let X` be the number of boxes you need
to purchase until you get a new toy that you don’t already have. Compute the expected
value ErX`s. [Hint: We can think of each new box purchased as a “coin flip” where
H ““we get a new toy” and T ““we don’t get a new toy.” Thus X` is a geometric
random variable. What is P pHq?]

(b) Let X be the number of boxes you purchase until you get all n toys. Thus we have

X “ X0 `X1 `X2 ` ¨ ¨ ¨ `Xn´1.

Use part (a) and linearity to compute the expected value ErXs.

(c) Application: Suppose you continue to roll a fair 6-sided die until you see all six sides.
How many rolls do you expect to make?

4.9. Consider an s-sided die with P pside iq “ pi. Roll the die n times and let Xi be the
number of times that side i shows up. Prove that CovpXi, Xjq “ ´npipj . [Hint: ]

Review of Key Topics

• Let S be the sample space of an experiment. A random variable is any function X :
S Ñ R that assigns to each outcome s P S a real number Xpsq P R. The support of X is
the set of possible values SX Ď R that X can take. We say that X is a discrete random
variable is the set SX doesn’t contain any continuous intervals.

• The probability mass function (pmf) of a discrete random variable X : S Ñ R is the
function fX : RÑ R defined by

fXpkq “

#

P pX “ kq if k P SX ,

0 if k R SX .

• We can display a probability mass function using either a table, a line graph, or a
probability histogram. For example, suppose that a random variable X has pmf fX
defined by the following table:

k ´1 1 2

fXpkq
2
6

3
6

1
6

Here is the line graph and the histogram:
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• The expected value of a random variable X : S Ñ R with support SX Ď R is defined by
either of the following formulas:

ErXs “
ÿ

kPSX

k ¨ P pX “ kq “
ÿ

sPS

Xpsq ¨ P psq.

On the one hand, we interpret this as the center of mass of the pmf. On the other hand,
we interpret this as the long run average value of X if the experiment is performed many
times.

• Consider any random variables X,Y : S Ñ R and constants α, β P R. The expected
value satisfies the following algebraic identities:

Erαs “ α,

ErαXs “ αErXs,

ErX ` αs “ ErXs ` α,

ErX ` Y s “ ErXs ` ErY s,

ErαX ` βY s “ αErXs ` βErY s.

In summary, the expected value is a linear function.

• Let X : S Ñ R be a random variable with mean µ “ ErXs. We define the variance as
the expected value of the squared distance between X and µ:

VarpXq “ ErpX ´ µq2s.

Using the properties above we also have

VarpXq “ ErX2s ´ µ2 “ ErX2s ´ ErXs2.

Since we feel bad about squaring the distance, we define the standard deviation by taking
the square root of the variance:

σ “
a

VarpXq.
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• For random variables X,Y : S Ñ R with ErXs “ µX and ErY s “ µY , we define the
covariance as follows:

CovpX,Y q “ ErpX ´ µXqpY ´ µY qs.

Using the above properties we also have

CovpX,Y q “ ErXY s ´ ErXs ¨ ErY s.

Observe that CovpX,Xq “ ErX2s ´ ErXs2 “ VarpXq.

• For any X,Y, Z : S Ñ R and α, β P R we have

CovpX,Y q “ CovpY,Xq,

CovpαX ` βY, Zq “ αCovpX,Zq ` βCovpY, Zq.

We say that covariance is a symmetric and bilinear function.

• Variance by itself satisfies the following algebraic identities:

Varpαq “ 0,

VarpαXq “ α2VarpXq,

VarpX ` αq “ VarpXq,

VarpX ` Y q “ VarpXq `VarpY q ` 2CovpX,Y q.

• For discrete random variables X,Y : S Ñ R we define their joint pmf fXY as follows:

fXY pk, `q “ P pX “ k and Y “ `q.

We say that X and Y are independent if for all k and ` we have

fXY pk, `q “ fXpkq ¨ fY p`q “ P pX “ kq ¨ P pY “ `q.

If X and Y are independent then we must have ErXY s “ ErXs ¨ ErY s, which implies
that CovpX,Y q “ 0 and VarpX ` Y q “ VarpXq `VarpY q. The converse statements are
not true in general.

• Let VarpXq “ σ2X and VarpY q “ σ2Y . If both of these are non-zero then we define the
coefficient of coerrelation:

ρXY “
CovpX,Y q

σX ¨ σY
.

We always have ´1 ď ρXY ď 1.

• Let p` q “ 1 with p ě 0 and q ě 0. A Bernoulli random variable has the following pmf:

k 0 1

P pX “ kq q p
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We compute

ErXs “ 0 ¨ q ` 1 ¨ p “ p,

ErX2s “ 02 ¨ q ` 12 ¨ p “ p,

VarpXq “ ErX2s ´ ErXs2 “ p´ p2 “ pp1´ pq “ pq.

• A sum of independent Bernoulli random variables is called a binomial random variable.
For example, suppose that X1, X2, . . . , Xn are independent Bernoullis with P pXi “ 1q “
p. Let X “ X1 `X2 ` ¨ ¨ ¨ `Xn. Then from linearity of expectation we have

ErXs “ ErX1s ` ErX2s ` ¨ ¨ ¨ ` ErXns “ p` p` ¨ ¨ ¨ ` p “ np

and from independence we have

VarpXq “ VarpX1q `VarpX2q ` ¨ ¨ ¨ `VarpXnq “ pq ` pq ` ¨ ¨ ¨ ` pq “ npq.

If we think of each Xi as the number of heads from a coin flip then X is the total number
of heads in n flips of a coin. Thus X has a binomial pmf:

P pX “ kq “

ˆ

n

k

˙

pkqn´k.

• Suppose an urn contains r red balls and g green balls. Grab n balls without replacement
and let X be the number of red balls you get. We say that X has a hypergeometric pmf:

P pX “ kq “

`

r
k

˘`

g
n´k

˘

`

r`g
n

˘ .

Let Xi “ 1 if the ith ball is red and Xi “ 0 if the ith ball is green. Then Xi is a
Bernoulli random variable with P pXi “ 1q “ r{pr ` gq, hence ErXis “ r{pr ` gq, and
from linearity of expectation we have

ErXs “ ErX1s ` ErX2s ` ¨ ¨ ¨ ` ErXns “
r

r ` g
`

r

r ` g
` ¨ ¨ ¨ `

r

r ` g
“

nr

r ` g
.

Since the Xi are not independent, we can’t use this method to compute the variance.30

• Consider a coin with P pHq “ p and let X be the number of coin flips until you see H.
We say that X is a geometric random variable with pmf

P pX “ kq “ P pT qk´1 ¨ P pHq “ qk´1p.

By manipulating the geometric series31 we can show that

P pX ą kq “ qk and P pk ď X ď `q “ qk´1 ´ q`.

By manipulating the geometric series a bit more we can show that

ErXs “
1

p
.

In other words, we expect to see the first H on the p1{pq-th flip of the coin.32

30The variance is nrgpr`g´nq

pr`gq2pr`g´1q
but you don’t need to know this.

31If |q| ă 1 then 1` q ` q2 ` ¨ ¨ ¨ “ 1{p1´ qq.
32The variance is q{p2 but you don’t need to know this.
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3 Introduction to Statistics

3.1 Motivation: Coin Flipping

Now that we have covered the basic ideas of probability and random variables, we are ready to
discuss some problems of applied statistics. The difficulty of the mathematics in this section
will increase by an order of magnitude. This is not bad news, however, since most of this
difficult mathematics has been distilled into recipes and formulas that the student can apply
without knowing all of the details of the underlying math.

As always, we will begin with our favorite subject: coin flipping. Here are a couple of typical
problems that we might want to solve.

The Idea of Hypothesis Testing

Given a standard coin, our usual hypothesis33 is that “the coin is fair.” Now suppose
that we flip the coin 200 times and we get heads 120 times. Is this result surprising
enough that we should reject the original hypothesis? In other words:

Do we still believe that the coin is fair?

Here is a closely related problem.

The Idea of a Confidence Interval

In a certain population of voters, suppose that p is the (unknown) proportion of voters
that plan to vote “yes” on a certain issue. In order to estimate the value of p we took a
poll of 200 voters and 120 of them answered “yes.” Thus our estimate for p is

p̂ “
120

200
“ 60%.

But how confident are we in this estimate? We will never be 100% confident but maybe
95% is good enough. For example, we would like to find a number e such that

we are 95% confident that the true value of p falls in the interval 60%˘ e.34

33Later we will call this the null hypothesis.
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It is worth mentioning up front that these problems are quite difficult, and that responsible
statisticians may disagree on the best way to solve them. In these notes I will present a few
of the standard answers.

For the first problem, let X be the number of heads that appear when a fair coin is flipped 200
times. (Recall that this is a binomial random variable with parameters n “ 200 and p “ 1{2.)
My computer plotted the pmf as follows:

From this picture it seems that a result of 120 heads would be quite rare, if the coin were
fair. How rare? To be specific, my computer tells me that

P p|X ´ 100| ě 20q “ 0.57%.

In other words, if the coin were fair then there would be a 0.57% chance of getting a result at
least this extreme. In this case I would guess that

“the coin is not fair.”

But I would certainly test the coin again, just to be sure.

For the second problem, we will model each voter as an independent35 coin flip with “heads”=“yes”
and p “ P pHq is an unknown constant. Suppose that we poll n “ 200 voters and let Y be the
number who say “yes.” We will use the sample proportion

p̂ “
Y

200
34Later we will call this a 95% confidence interval for p.
35This is false but hopefully not too false.
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as an estimator for the true value of p. Since Y is a binomial random variable we know that
the mean and standard deviation have the following formulas:

µ “ np “ 200p and σ “
a

npp1´ pq “
a

200pp1´ pq.

Later we will learn that pY ´ µq{σ has an approximately standard normal distribution. Then
my computer tells me that

95% « P

ˆ

´1.96 ă
Y ´ µ

σ
ă 1.96

˙

“ P

˜

´1.96 ă
200p̂´ 200p
a

200pp1´ pq
ă 1.96

¸

“ P

˜

´1.96 ă
p̂´ p

a

pp1´ pq{200
ă 1.96

¸

“ P

˜

´1.96 ¨

c

pp1´ pq

200
ă p̂´ p ă 1.96 ¨

c

pp1´ pq

200

¸

“ P

˜

´1.96 ¨

c

pp1´ pq

200
ă p´ p̂ ă 1.96 ¨

c

pp1´ pq

200

¸

“ P

˜

p̂´ 1.96 ¨

c

pp1´ pq

200
ă p ă p̂` 1.96 ¨

c

pp1´ pq

200

¸

“ P pp̂´ e ă p ă p̂` eq .

We conclude that there is an approximately 95% chance that the true value of p falls in the
interval p̂˘ e, where the margin of error is defined by the formula

e “ 1.96 ¨

c

pp1´ pq

200
.

The bad news is that this formula involves the unknown parameter p.36 If we are
willing to be bold, then we might go ahead and replace the true value of p by the estimator
p̂ “ Y {200 and just hope for the best. Thus our formula for the margin of error becomes

e “ 1.96 ¨

c

p̂p1´ p̂q

200

Finally, suppose that we perform the poll and we obtain the estimate p̂ “ 120{200 “ 0.6.
Then our 95% confidence interval is

p̂˘ 1.96 ¨

c

p̂p1´ p̂q

200
“ 0.6˘ 1.96 ¨

c

p0.6qp1´ 0.6q

200
“ 0.6˘ 0.068 “ 60%˘ 6.8%.37

In summary, we will say that

36Statistics is hard.
37Maybe you feel that this method is a bit dubious, but it is by far the most popular way to compute a

confidence interval for an unknown proportion. Later we will discuss some alternative methods.
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“we are 95% confident that the true value of p falls in the interval 60%˘ 6.8%.”

Note that this interval is rather large. If you want to shrink the interval then you need to do
one of the following:

• Decrease the desired confidence level.

• Increase the sample size.

The rest of this chapter will be devoted to explaining these examples in detail. The key idea
is that the histogram of a binomial random variable can be closely approximated by a certain
smooth curve, called a “normal curve.” For example, let X have a binomial distribution with
parameters n “ 20 and p “ 1{2. (For example, X might be the number of heads in 20 flips of a
fair coin.) Here is a picture of the probability histogram with the normal curve superimposed:

Without explaining the details right now, let me just tell you that this curve has the equation

fpxq “
1

?
10π

¨ e´px´10q
2{10.

Now let’s brush off our Calculus skills. If we want to compute the probability that X is
between 9 and 12 (inclusive) then we need to add the areas of the corresponding rectangles.
This is impossible to compute by hand, but my computer tells me the answer:

P p9 ď 10 ď 12q “ P pX “ 9q ` P pX “ 10q ` P pX “ 11q ` P pX “ 12q

“

ˆ

20

9

˙

{220 `

ˆ

20

10

˙

{220 `

ˆ

20

11

˙

{220 `

ˆ

20

12

˙

{220 “ 61.67%.
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On the other hand, if we are willing to accept an approximate value then we might replace these
four rectangles with the corresponding area under the curve between x “ 8.5 (the left endpoint
of the leftmost rectangle) and x “ 12.5 (the right endpoint of the rightmost rectangle):

We can compute this area by integrating the function. My computer gives the following result:

P p9 ď X ď 12q «

ż 12.5

8.5
fpxq dx “

ż 12.5

8.5

1
?

10π
¨ e´px´10q

2{10 dx “ 61.71%.

Note that the approximation is quite good. It might seem that this just replaces one hard
computation by another hard computation, but it turns out that integrating under the normal
curve is actually much easier than summing the rectangles. Soon we will even learn how to
do it by hand.

But first I need to define the concept of a “continuous random variable.”

3.2 Definition of Continuous Random Variables

On the first exercise set I asked you to select a random number X from the real interval

r0, 1s “ tx P R : 0 ď x ď 1u.

We want to do this in some way so that all of the numbers are “equally likely.” Computers
have routines to choose random numbers, but they will always round the answer to some
number of decimal places, which means that infinitely many numbers in the interval will be
impossible to get.

Unfortunately, no digital computer will ever be able to create a truly continuous distribution.
Instead, let’s imagine an analog situation such as throwing a billiard ball onto a billiard table.
After the ball settles down let X be the distance from the ball to one of the walls of the table:
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Let’s assume that the maximum value of X is 1 unit. Then X is a random variable with
support SX “ r0, 1s. Now here’s an interesting question:

P pX “ 1{2q “ 0 or P pX “ 1{2q ‰ 0?

If we were simulating X on a computer, say to 5 decimal places, then the probability of getting
X “ 0.50000 would be small but nonzero. With the billiard ball, however, P pX “ 1{2q is
the probability that the ball lands exactly in the center of the table. If all values of X are
equally likely then this probability must be zero.

Indeed, suppose that every value of X has the same probability ε. Then since there are
infinitely many points on the table we must have

1 “ P pr0, 1sq “ ε` ε` ε` ¨ ¨ ¨ .

If ε ą 0 then the infinite sum ε` ε` ε` ¨ ¨ ¨ is certainly larger than 1, so our only option is
to take ε “ 0. In other words, we have

P pX “ kq “ 0 for all values of k.

This is sad because is means that X does not have a probability mass function. So how can
we compute anything about the random variable X?

We need a new trick, so we return to our basic analogy

probability « mass.

When dealing with discrete random variables we used the idea that

mass “ Σ point masses.

But now we don’t have any point masses because our “probability mass” is smeared out over
a continuous interval. In this case we will think in terms of the physical concept of density:

mass “
ş

density.

Definition of Continuous Random Variable

A continuous random variable X is defined by some real-valued function

fX : RÑ R
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called the probability density function (pdf) of X. The support of X is the set SX Ď R
on which fX takes non-zero values. The density function must satisfy two properties:

• Density is non-negative:

fXpxq ě 0 for all x P R.

• The total mass is 1:
ż 8

´8

fXpxq dx “ 1.

The probability that X falls in any interval rk, `s Ď R is defined by integrating the density
from x “ k to x “ `:

P pk ď X ď `q “

ż `

k
fXpxq dx,

and it follows from this that the probability of any single value is zero:

P pX “ kq “ P pk ď X ď kq “

ż k

k
fXpxq dx “ 0.

In other words, a continuous random variable does not have a probability mass function.

The fact that P pX “ kq “ 0 for all k means that we don’t have to care about the endpoints:

P pk ď X ď `q “ P pX “ kq ` P pk ă X ă `q ` P pX “ `q

“ 0` P pk ă X ă `q ` 0

“ P pk ă X ă `q.

This is very different from the case of discrete random variables, so be careful.

Now we have the technology to define a random number X P r0, 1s more precisely. Instead
of saying that all numbers are equally likely, we will say that X has constant (or “uniform”)
density. That is, we let X be defined by the following density function:

fXpxq “

#

1 if 0 ď x ď 1,

0 otherwise.

Here is a graph of the pdf. Note that the total area is 1.
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From this we can also compute the probability that X falls in any interval. Suppose that
0 ď k ď ` ď 1. Then we have

P pk ď X ď `q “

ż `

k
fXpxq dx “

ż `

k
1 dx “ x

ˇ

ˇ

`

k
“ `´ k.

We can also see this from the picture because the corresponding region is just a rectangle of
width `´ k and height 1:

In other words, the probability that a random number X P r0, 1s falls in an interval rk, `s Ď
r0, 1s is just the length of the interval: `´ k. That agrees with my intuition.

Here is the general story.
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Uniform Random Variables

Consider any interval ra, bs Ď R. The uniform random variable X P ra, bs is defined by
the density function

fXpxq “

#

1{pb´ aq if a ď x ď b,

0 otherwise.

Observe that the region under the graph of fX is a rectangle of width b ´ a and height
1{pb´ aq, hence the total area is 1:

Let’s try to compute the expected value and standard deviation of the uniform random vari-
able. It turns out that the algebraic theory of continuous random variables is exactly the same
as for discrete random variables. All we have to do is define the moments. When X is discrete
recall that the expected value is the center of the point mass distribution:

ErXs “
ÿ

k

k ¨ P pX “ kq.

The equation for center of mass of a continuous distribution is “exactly the same,” except
that we replace the pmf fXpkq “ P pX “ kq by the pdf fXpxq and we replace the summation
by an integral:

ErXs “

ż

x ¨ fXpxq dx.

Moments of Continuous Random Variables
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Let X be a continuous random variable with pdf fXpxq. We define the rth moment by

ErXrs “

ż 8

´8

xr ¨ fXpxq dx.

If Y is another continuous random variable then we define the mixed moments by

ErXrY ss “

ż 8

´8

ż 8

´8

xr ¨ ys ¨ fXpx, yq dx dy,

where fXY : R2 Ñ R is called the joint pdf of X and Y . We won’t pursue joint pdf’s in
this class because I don’t assume a knowledge of multivariable calculus.

Having defined the moments, the variance and covariance are exactly the same as before:

VarpXq “ ErX2s ´ ErXs2 and CovpX,Y q “ ErXY s ´ ErXs ¨ ErY s.

Let us practice the definitions by computing the mean and standard deviation of the uniform
random variable X P ra, bs. The mean is defined by

µ “ ErXs “

ż 8

´8

x ¨ fXpxq dx

“

ż b

a
x ¨

1

b´ a
dx

“
x2

2
¨

1

b´ a

ˇ

ˇ

ˇ

ˇ

b

a

“
b2

2 ¨ pb´ aq
´

a2

2 ¨ pb´ aq

“
b2 ´ a2

2 ¨ pb´ aq
“
pb` aq���

�pb´ aq

2 ¨���
�pb´ aq

“
a` b

2
.

In fact, we could have guessed this answer because the center of mass is just the midpoint
between a and b:
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The standard deviation is harder to guess, and harder to compute.38 First we compute the
second moment:

ErX2s “

ż 8

´8

x2 ¨ fXpxq dx

“

ż b

a
x2 ¨

1

b´ a
dx

“
x3

3
¨

1

b´ a

ˇ

ˇ

ˇ

ˇ

b

a

“
b3

3 ¨ pb´ aq
´

a3

3 ¨ pb´ aq

“
b3 ´ a3

3 ¨ pb´ aq
“
pa2 ` ab` b2q���

�pb´ aq

3 ¨���
�pb´ aq

“
a2 ` ab` b2

3
.

Next we compute the variance:

VarpXq “ ErX2s ´ ErXs2s

“
a2 ` ab` b2

3
´

ˆ

a` b

2

˙2

“
a2 ` ab` b2

3
´
a2 ` 2ab` b2

4

“
4pa2 ` ab` b2q

12
´

3pa2 ` 2ab` b2q

12

“
a2 ´ 2ab` b2

12
“
pa´ bq2

12
.

Finally, since a ď b, the standard deviation is

σ “

c

pa´ bq2

12
“
b´ a
?

12
“ 0.289ˆ pb´ aq.

38I will use the formula b3 ´ a3 “ pb´ aqpa2 ` ab` b2q for a difference of cubes.
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In other words, the standard deviation is about 0.289 times the length of the interval. We can
use this to compute the probability P pµ´ σ ď X ď µ` σq that X falls within one standard
deviation of its mean. Instead of using an integral, we observe that this area is a rectangle:

Since the height is 1{pb´ aq and the width is 2σ we have

P pµ´ σ ď X ď µ` σq “ (base)ˆ (height)

“ 2σ ¨
1

b´ a

“
2 ¨���

�pb´ aq
?

12
¨

1

���
�pb´ aq
“

2
?

12
“ 57.7%.

It is interesting that the same result holds for all uniform distributions, regardless of the
values of a and b. I want to warn you, though, that this result only applies to uniform
random variables. Below we will see that normal random variables satisfy

P pµ´ σ ď X ď µ` σq “ 68.3%.

Let me end this section by addressing a possible point of confusion.

Confusion: Where is the Sample Space?

Earlier I told you that a random variable is a function X : S Ñ R from a sample space
to the real numbers. Recall that for discrete random variables we have two formulas for
the expected value:

ErXs “
ÿ

kPSX

k ¨ P pX “ kq “
ÿ

sPS

Xpsq ¨ P psq.

How does this formula translate to continuous random variables? In other words, what
is the sample space of a continuous random variable? There are two points of view:
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(1) The sample space is too difficult to describe so we don’t mention it.39 In this case
we just identify the sample space S with the support SX and we say that X is the
outcome of the experiment.

(2) There is no sample space. A continuous random variable is just a mathematical
abstraction that helps us to approximate discrete random variables.

For the purpose of this course you can adopt the second point of view.

3.3 Definition of Normal Random Variables

Now it is time to discuss the most important family of continuous random variables. These
were first discovered around 1730 by a French mathematician living in London40 called Abra-
ham de Moivre (1667–1754).

De Moivre’s Problem

Let X be the number of heads obtained when a fair coin is flipped 3600 times. What is
the probability that X falls between 1770 and 1830?

Since X is a binomial random variable with X “ 3600 and p “ 1{2 we know41 that

P p1770 ď X ď 1830q “
1830
ÿ

k“1770

P pX “ kq

“

1830
ÿ

k“1770

ˆ

3600

k

˙ˆ

1

2

˙k ˆ1

2

˙3600´k

“

1830
ÿ

k“1770

ˆ

3600

k

˙

{ 23600.

39Occasionally we can describe the sample space. For example, if we roll a billiard ball on an aˆb rectangular
table then the sample space is a set of ordered pairs: S “ tpx, yq : 0 ď x ď a, 0 ď y ď bu. Let Xpx, yq “ x be
the x-coordinate and assume that the probability density is uniform. Then the summation over S becomes the
following double integral:

ErXs “

ż a

0

x ¨
1

a
dx “

ż b

0

ż a

0

x ¨
1

ab
dxdy “

a

2
.

40He lived in England to avoid religious persecution in France.
41Since X is discrete, the endpoints do matter.
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However, this summation is completely impossible to solve by hand. Indeed, the denominator
23600 has almost 2500 decimal digits:

log10
`

23600
˘

“ 2494.5.

Computing this probability in 1730 was a formidable problem. Nevertheless, de Moivre was
able to apply the relatively new techniques of Calculus to find an approximate answer. If he
hadn’t made a slight mistake,42 he would have arrived at the following solution:

P p1770 ď X ď 1830q “
1830
ÿ

k“1770

ˆ

3600

k

˙

{ 23600 « 69.06880%.

My computer tells me that the exact answer is 69.06883%, so de Moivre’s solution is accurate
to four decimal places. Amazing! How did he do it?

There are two steps in the solution. To make the analysis easier, de Moivre first assumed that
the fair coin is flipped an even number of times, say n “ 2m. Then he performed some clever
tricks43 with the Taylor series expansion of the logarithm to prove the following.

De Moivre’s Approximation

If the ratio `{m is small then we have

log

„ˆ

2m

m` `

˙

{

ˆ

2m

m

˙

« ´`2{m,

and hence
ˆ

2m

m` `

˙

{

ˆ

2m

m

˙

« e´`
2{m.

Now let X be the number of heads obtained when a fair coin is flipped 2m times. It
follows from the above approximation that

„ˆ

2m

m` `

˙

{ 22m


« e´`
2{m ¨

„ˆ

2m

m

˙

{ 22m


P pX “ m` `q « e´`
2{m ¨ P pX “ mq.

In other words, the probability of getting m` ` heads is approximately e´`
2{m times the

probability of getting m heads.

This is excellent progress, because the formula on the right is defined for all real numbers
` P R, whereas the formula on the left is only defined when ` is a whole number. The next

42He forgot to apply the continuity correction.
43See the Wikipedia page for details: <https://en.wikipedia.org/wiki/De_Moivre-Laplace_theorem>
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step is to find an approximation for P pX “ mq that is defined for any real number m P R. By
using tricks with logarithms, de Moivre was able to show that

P pX “ mq “

ˆ

2m

m

˙

{ 22m Ñ
1

?
cm

as mÑ8,

where c is some constant. By computing c to a few decimal places he noticed that c « 3.14.
Therefore he conjectured that c is exactly equal to π, but he was unable to prove this. At this
point his friend James Stirling stepped in to complete the proof.44

Stirling’s Approximation

Let X be the number of heads obtained when a fair coin is flipped 2m times. If m is large
then the probability of getting m heads (and m tails) is approximately 1{

?
πm. That is,

we have

P pX “ mq “

ˆ

2m

m

˙

{ 22m “

ˆ

2m

m

˙

{ 4m «
1

?
πm

.

Finally, by combining de Moivre’s and Stirling’s approximations, we obtain an approximate
formula for the probability P pX “ m` `q that makes sense for any real values of m and `:

P pX “ m` `q « e´`
2{m ¨ P pX “ mq «

1
?
πm

¨ e´`
2{m.

And this is the formula that de Moivre used to solve his problem. Recall that the number of
coin flips is 2m “ n “ 3600, and hence m “ 1800. If `{1800 is small then the probability of
getting 1800` ` heads in 3600 flips of a fair coin has the following approximation:

P pX “ 1800` `q «
1

?
1800π

¨ e´`
2{1800.

Since 30{1800 is rather small, de Moivre obtained a rather good estimate for the probability
P p1770 ď X ď 1830q by integrating this function from ´30 to `30:

P p1770 ď X ď 1830q “
30
ÿ

`“´30

P pX “ 1800` `q

«

ż 30

´30

1
?

1800π
¨ e´x

2{1800 dx “ 68.2688%.

It might seem to you that this integral is just as difficult as the sum involving binomial
coefficients. Indeed, this integral is difficult in the sense that the solution cannot be written

44This proof is much less straightforward and requires a trick, so I won’t even mention it. It is surprising
that π shows up in this formula since there are no circles anywhere to be seen.
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down exactly.45 However, it is not difficult to compute an approximate answer by hand.
De Moivre did this by integrating the first few terms of the Taylor series. This is already
quite impressive but his solution would have been more accurate if he had used a continuity
correction and integrated from ´30.5 to 30.5. Then he would have obtained

30
ÿ

`“´30

P pX “ 1800` `q «

ż 30.5

´30.5

1
?

1800π
¨ e´x

2{1800 dx “ 69.06880%,

which is accurate to four decimal places.

Many years later (around 1810) Pierre-Simon Laplace brought de Moivre’s work to maturity
by extending this to the case when the coin is not fair.

The de Moivre-Laplace Theorem

Let X be a binomial random variable with parameters n and p. If the ratio k{np is small
and if the numbers np and nq are both large then we have the following approximation:

P pX “ kq “

ˆ

n

k

˙

pkqn´k «
1

?
2πnpq

¨ e´pk´npq
2{p2npqq.

To clean this up a bit we will write

µ “ np and σ2 “ npq

for the mean and variance of X. Then the approximation becomes

P pX “ kq «
1

?
2πσ2

¨ e´pk´µq{2σ
2
.

You might feel rather overwhelmed at this point, but I promise you that the hard work is
done. All that remains is to explore the consequences of this theorem. We begin by giving a
special name to the strange function in the de Moivre-Laplace Theorem.

Normal Random Variables

Let X be a continuous random variable. We say that X has a normal distribution with

45I’ll bet your calculus instructor never told you about the antiderivative of e´x
2{2. That’s because the

antiderivative cannot be expressed in terms of functions that you know. It’s an entirely new kind of function
called the “error function.”
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parameters µ and σ2 if its pdf has the formula

npxq “
1

?
2πσ2

¨ e´px´µq
2{2σ2

.

You might also see this in the equivalent form

npxq “
1

σ
?

2π
¨ e´

1
2p

x´µ
σ q

2

.

We will use the shorthand X „ Npµ, σ2q to indicate that X has this pdf.

Recall that a probability density function must satisfy two conditions:

npxq ě 0 for all x P R and

ż 8

´8

npxq dx “ 1.

The first condition is true because the exponential function is always positive. The second
condition is closely related to Stirling’s approximation. It is equivalent to the statement that

ż 8

´8

e´x
2
“
?
π.

You might see a proof of this when you take vector calculus but right now we’ll just take it
for granted. It turns out that the “parameters” µ and σ2 are actually the mean and variance
of continuous random variable.46 In other words, we have

ErXs “

ż 8

´8

x ¨ npxq dx “ µ

and

VarpXq “

ż 8

´8

px´ µq2 ¨ npxq dx “ σ2.

This can be proved using integration by parts, but it’s not fun so we won’t bother.

The only calculation I want to do is to compute the first and second derivatives of npxq so we
can sketch the graph. If f : RÑ R is any differentiable function and if c P R is any constant
then the chain rule tells us that

d

dx
c ¨ efpxq “ c ¨ efpxq ¨ f 1pxq.

Applying this idea to the function npxq gives

n1pxq “ npxq ¨
d

dx

´px´ µq2

2σ2
“ npxq ¨

´2px´ µq

2σ2
“ ´

1

σ2
¨ npxq ¨ px´ µq.

46They’d better be. Otherwise this is a terrible notation.
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Since npxq ą 0 for all x we see that n1pxq “ 0 if and only if px ´ µq “ 0, hence the graph
has a local maximum or minimum when x “ µ. Next we use the product rule to compute the
second derivative:

n2pxq “ ´
1

σ2
¨
d

dx
npxq ¨ px´ µq

“ ´
1

σ2
¨
“

npxq ` n1pxqpx´ µq
‰

“ ´
1

σ2
¨

„

npxq ´
1

σ2
¨ npxqpx´ µqpx´ µq



“ ´
1

σ2
¨ npxq ¨

„

1´
px´ µq2

σ2



.

Again, since npxq is never zero we find that n2pxq “ 0 precisely when

1´
px´ µq2

σ2
“ 0

px´ µq2

σ2
“ 1

px´ µq2 “ σ2

x´ µ “ ˘σ

x “ µ˘ σ.

Hence the graph has two inflection points at x “ µ ˘ σ.47 Furthermore, since ´npxq{σ2 is
always strictly negative we see that the graph is concave down between µ˘ σ and concave up
outside this interval. In summary, here is a sketch of the graph:

47In fact, this is the reason why de Moivre invented the standard deviation.
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From this picture we observe that the inflection points are about 60% as high at the maximum
value. This will always be true, independent of the values of µ and σ. To see this, first note
that the height of the maximum is

npµq “
1

?
2πσ2

¨ e´pµ´µq
2{2σ2

“
1

?
2πσ2

¨ e0 “
1

?
2πσ2

,

which depends on the value of σ. Next observe that the height of the inflection points is

npµ˘ σq “
1

?
2πσ2

¨ e´pµ˘σ´µq
2{2σ2

“
1

?
2πσ2

¨ e´p˘σq
2{2σ2

“
1

?
2πσ2

¨ e´σ
2{2σ2

“
1

?
2πσ2

¨ e´1{2

which also depends on σ. However, the ratio of the heights is constant:

npµ˘ σq

npµq
“
e´1{2{���

�?
2πσ2

1{���
�?

2πσ2
“ e´1{2 “ 0.6065.

Knowing this fact will help you when you try to draw normal curves by hand.
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3.4 Working with Normal Random Variables

We have seen the definition of normal random variables, but we have not seen how to work
with them. If X „ Npµ, σ2q is normal with parameters µ and σ2 then the goal is to be able
to compute integrals of the form

P pa ď X ď bq “

ż b

a

1
?

2πσ2
¨ e´px´µq

2{2σ2
dx.

There are three options.

Option 1. Use a computer. This is how the professionals do it.

Option 2. Use calculus to compute an approximate answer by hand. This is what de Moive
and Laplace did because they had no other choice. I’ll just sketch the idea. For example,
suppose that we want to compute the following integral:

ż b

a
e´x

2
dx.

To do this we first expand e´x
2

as a Taylor series near x “ 0. Without explaining the details,
I’ll just tell you that

e´x
2
“ 1´ x2 `

1

2!
x4 ´

1

3!
x6 `

1

4!
x8 ´ ¨ ¨ ¨ .

Then we can integrate the Taylor series term by term:

ż b

a
e´x

2
dx “

ż b

a

ˆ

1´ x2 `
x4

2!
´
x6

3!
`
x8

4!
´ ¨ ¨ ¨

˙

dx

“ pb´ aq ´
pb3 ´ a3q

3
`
pb5 ´ a5q

5 ¨ 2!
´
pb7 ´ a7q

7 ¨ 3!
`
pb9 ´ a9q

9 ¨ 4!
´ ¨ ¨ ¨ .

This series converges rather quickly so it doesn’t take many terms to get an accurate answer.

Option 3. “Standardize” the random variable and then look up the answer in a table.

I’ll show you how to do this now. Suppose that X is any random variable (not necessarily
normal) with ErXs “ µ and VarpXq “ σ2. Assuming that X is not constant, so that σ ‰ 0,
we will consider the random variable

Y “
X ´ µ

σ
“

1

σ
X ´

µ

σ
.

On a previous exercise set you showed that

ErY s “ E

„

1

σ
X ´

µ

σ



“
1

σ
ErXs ´

µ

σ
“
µ

σ
´
µ

σ
“ 0
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and

VarpY q “ Var

ˆ

1

σ
X ´

µ

σ

˙

“
1

σ2
VarpXq “

σ2

σ2
“ 1.

Thus we have converted a general random variable X into a random variable Y with ErY s “ 0
and VarpY q “ 1, called the standardization of X.

In the special case that X „ Npµ, σ2q is normal we will use the letter Z to denote the
standardization:

Z “
X ´ µ

σ
.

You will prove on the next exercise set that this random variable Z is also normal.

Standardization of a Normal Random Variable

Let X „ Npµ, σ2q be a normal random variable with mean µ and variance σ2. Then

Z “
X ´ µ

σ

is a normal random variable with mean 0 and variance 1. In other words, we have

X „ Npµ, σ2q ðñ
X ´ µ

σ
„ Np0, 1q.

By tradition we use the letter Z „ Np0, 1q to denote a standard normal random variable.

This result means that any computation involving a normal random variable can be turned
into a computation with a standard normal random variable. Here’s how we will apply the
idea. Suppose that X „ Npµ, σ2q and let Z “ pX ´ µq{σ be the standardization. Then for
any real numbers a ď b we have

P pa ď X ď bq “ P pa´ µ ď X ´ µ ď b´ µq

“ P

ˆ

a´ b

σ
ď
X ´ µ

σ
ď
b´ µ

σ

˙

“ P

ˆ

a´ µ

σ
ď Z ď

b´ µ

σ

˙

“

ż pb´µq{σ

pa´µq{σ

1
?

2π
¨ e´x

2{2 dx.

We have reduced the problem of computing areas under any normal curve to the problem of
computing areas under the standard normal curve. Luckily this problem has been solved for
us and the answers have been recorded in a table of Z-scores.
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Here’s how to read the table. Let npxq be the pdf of a standard normal random variable:

npxq “
1

?
2πσ2

¨ e´x
2{2.

In order to integrate this function we need an anti-derivative. Sadly, it is impossible to write
down this anti-derivative in terms of familiar functions, so we must give a new name. We will
call it Φ.48 Geometrically, we can think of Φpzq as the area under npxq from x “ ´8 to x “ z:

Φpzq “ P pZ ď zq “

ż z

´8

1
?

2π
¨ e´x

2{2 dx.

Here is a picture:

Then according to the Fundamental Theorem of Calculus, for all z1 ď z2 we have

P pz1 ď Z ď z2q “ Φpz2q ´ Φpz1q

Φpz1q ` P pz1 ď Z ď z2q “ Φpz2q.

This is easy to see by looking at the picture:

The symmetry of the normal distribution also tells us something about the anti-derivative Φ.
To see this, let z ě 0 be any non-negative number. Then

Φp´zq “ P pZ ď ´zq

48This is also sometimes called the “error function” because it is used to model errors in scientific measure-
ments.
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is the area of the infinite tail to the left of ´z and

P pZ ě zq “ 1´ P pZ ď zq “ 1´ Φpzq

is the area of the infinite tail to the right of z. Because of symmetry these tails have equal
area:

Therefore we conclude that

Φp´zq “ 1´ Φpzq

Φpzq ` Φp´zq “ 1

for all values of z P R. This is useful because many tables of Z-scores only show Φpzq for
non-negative values of z.

Time for an example.

Basic Example. Suppose that X is normally distributed with mean µ “ 6 and variance
σ2 “ 25, hence standard deviation σ “ 5. Use a table of Z-scores to compute the probability
that X falls within one standard deviation of its mean:

P p|X ´ µ| ă σq “ P p|X ´ 6| ă 5q “ ?

Solution. Note that we can rewrite the problem as follows:

P p|X ´ 6| ă 5q “ P p´5 ă pX ´ 6q ă 5q “ P p1 ă X ă 11q.

Now we use the fact that Z “ pX ´ µq{σ “ pX ´ 6q{5 is standard normal to compute

P p1 ă X ă 11q “ P p1´ 6 ă X ´ 6 ă 11´ 6q

“ P

ˆ

1´ 6

5
ă
X ´ 6

5
ă

11´ 6

5

˙

“ P

ˆ

´5

5
ă Z ă

5

5

˙

“ P p´1 ă Z ă 1q.
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Finally, we look up the answer in our table:

P p1 ă X ă 11q “ P p´1 ă Z ă 1q

“ Φp1q ´ Φp´1q

“ Φp1q ´ r1´ Φp1qs

“ 2 ¨ Φp1q ´ 1

“ 2p0.8413q ´ 1

“ 0.6826

“ 68.26%.

In summary, there is a 68.26% chance that X falls within one standard deviation of its mean.
In fact, this is true for any normal random variable. Indeed, suppose that X „ Npµ, σ2q.
Then we have

P p|X ´ µ| ă σq “ P

ˆ

´1 ă
X ´ µ

σ
ă 1

˙

“ Φp1q ´ Φp´1q “ 68.26%.

On the next exercise set you will verify for normal variables that

P p|X ´ µ| ă 2σq “ 95.44% and P p|X ´ µ| ă 3σq “ 99.74%.

Since normal distributions are so common,49 it is useful to memorize the numbers 68%, 95%
and 99.7% as the approximate probabilities that a normal random variable falls within 1, 2 or
3 standard deviations of its mean.

To end the section, here is a more applied example.

Example of de Moivre-Laplace. Suppose that a fair coin is flipped 200 times. Use the
de Moivre-Laplace Theorem to estimate the probability of getting between 98 and 103 heads,
inclusive.

Solution. Let X be the number of heads obtained. We know that X is a binomial random
variable with parameters n “ 200 and p “ 1{2. Hence the mean and variance are

µ “ np “ 100 and σ2 “ npq “ 50.

The de Moivre-Laplace Theorem tells us that X is approximately normal, from which it follows
that pX ´ µq{σ “ pX ´ 100q{

?
50 is approximately standard normal. Let Z „ Np0, 1q be a

standard normal distribution. Then we have

P p98 ď X ď 103q “ P

ˆ

98´ 100
?

50
ď
X ´ 100
?

50
ď

103´ 100
?

50

˙

49That’s why we call them “normal.”
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“ P

ˆ

´0.28 ď
X ´ 100
?

50
ď 0.42

˙

« P p´0.28 ď Z ď 0.42q

“ Φp0.42q ´ Φp´0.28q

“ Φp0.42q ´ r1´ Φp0.28qs

“ Φp0.42q ` Φp0.28q ´ 1

“ 0.6628` 0.6103´ 1

“ 27.3%.

Unfortunately, this is not a very good approximation. (My computer tells me that the exact
answer is 32.78%.) To increase the accuracy, let us do the computation again with a continuity
correction. Recall that X is a discrete random variable with mean µ “ 100 and standard
deviation σ “

?
50 “ 7.07. Now let X 1 „ Np100, 50q be a normal random variable with the

same parameters. The de Moivre-Laplace Theorem tells us that X « X 1. Since X is discrete
and X 1 is continuous we should tweak the endpoints as follows:

P p98 ď X ď 103q « P p97.5 ď X 1 ď 103.5q.

Now we can look up the answer in our table:

P p98 ď X ď 103q « P p97.5 ď X 1 ď 103.5q

“ P

ˆ

97.5´ 100
?

50
ď
X 1 ´ 100
?

50
ď

103.5´ 100
?

50

˙

“ P

ˆ

´0.35 ď
X 1 ´ 100
?

50
ď 0.49

˙

“ P p´0.35 ď Z ď 0.49q

“ Φp0.49q ´ Φp´0.35q

“ Φp0.49q ´ r1´ Φp0.35qs

“ Φp0.49q ` Φp0.35q ´ 1

“ 0.6879` 0.6368´ 1

“ 32.5%.

That’s much better.

Exercises 5

5.1. Let U be the uniform random variable on the interval r2, 5s. Compute the following:

P pU “ 0q, P pU “ 3q, P p0 ă U ă 3q, P p3 ă U ă 4.5q, P p3 ď U ď 4.5q.

5.2. Let X be a continuous random variable with pdf defined as follows:

fXpxq “

#

c ¨ x2 if 0 ď x ď 1,

0 otherwise.
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(a) Compute the value of the constant c. [Hint: The total area under the pdf is 1.]

(b) Find the mean µ “ ErXs and standard deviation σ “
a

VarpXq.

(c) Compute the probability P pµ´ σ ď X ď µ` σq.

(d) Draw the graph of fX , showing the interval µ˘ σ in your picture.

5.3. Let Z be a standard normal random variable, which is defined by the following pdf:

npxq “
1
?

2π
¨ e´x

2{2.

Let Φpzq be the associated cdf (cumulative density function), which is defined by

Φpzq “ P pZ ď zq “

ż z

´8

npxq dx.

Use the attached table to compute the following probabilities:

(a) P p0 ă Z ă 0.5q,

(b) P pZ ă ´0.5q,

(c) P pZ ą 1q, P pZ ą 2q, P pZ ą 3q.

(d) P p|Z| ă 1q, P p|Z| ă 2q, P p|Z| ă 3q,

5.4. Continuing from Problem 3, use the attached table to find numbers c, d P R solving the
following equations:

(a) P pZ ą cq “ P p|Z| ą dq “ 2.5%,

(b) P pZ ą cq “ P p|Z| ą dq “ 5%,

(c) P pZ ą cq “ P p|Z| ą dq “ 10%.

5.5. Let X „ Npµ, σ2q be a normal random variable with mean µ and variance σ2. Let
α, β P R be any constants such that α ‰ 0 and consider the random variable

Y “ αX ` β.

(a) Show that ErY s “ αµ` β and VarpY q “ α2σ2.

(b) Show that Y has a normal distribution Npαµ` β, α2σ2q. In other words, show that for
all real numbers y1 ď y2 we have

P py1 ď Y ď y2q “

ż y2

y1

1
?

2πα2σ2
¨ e´ry´pαµ`βqs

2
{2α2σ2

dy.
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[Hint: For all x1 ď x2 you may assume that

P px1 ď X ď x2q “

ż x2

x1

1
?

2πσ2
¨ e´px´µq

2{2σ2
dx.

Now use the substitution y “ αx` β.]

It follows from this problem that Z “ pX´µq{σ “ 1
σX´

µ
σ has a standard normal distribution.

That is extremely useful.

5.6. The average weight of a bag of chips from a certain factory is 150 grams. Assume that
the weight is normally distributed with a standard deviation of 12 grams.

(a) What is the probability that a given bag of chips has weight greater than 160 grams?

(b) Collect a random sample of 10 bags of chips and let Y be the number that have weight
greater than 160 grams. Compute the probability P pY ď 2q.

3.5 Sampling and the Central Limit Theorem

Let me recall how we computed the mean and variance of a binomial random variable. If a
coin is flipped many times then we consider the following sequence of random variables:

Xi “

#

1 if the ith flip shows H,

0 if the ith flip shows T .

If we perform the experiment in the same way each time then we can assume that each flip
has the same probability p of showing heads. Then for each i we compute that

ErXis “ p and VarpXiq “ pq.

In this situation we say that the sequence X1, X2, X3, . . . of random variables is identically
distributed. To be specific, each Xi has a Bernoulli distribution with parameter p. Now
suppose that the coin is flipped n times and and let ΣX be the total number of heads:

ΣX “ X1 `X2 ` ¨ ¨ ¨ `Xn.

Then we can use the linearity of expectation to compute the expected number of heads:

ErΣXs “ ErX1 `X2 ` ¨ ¨ ¨ `Xns

“ ErX1s ` ErX2s ` ¨ ¨ ¨ ` ErXns

“ p` p` ¨ ¨ ¨ ` p
loooooooomoooooooon

n times

“ np.
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From the beginning of the course we have also assumed that a coin has “no memory.” Tech-
nically this means that the sequence of X1, X2, X3, . . . of random variables are mutually in-
dependent. With this additional assumption we can also compute the variance in the number
of heads:

VarpΣXq “ VarpX1 `X2 ` ¨ ¨ ¨ `Xnq

“ VarpX1q `VarpX2q ` ¨ ¨ ¨ `VarpXnq

“ pq ` pq ` ¨ ¨ ¨ ` pq
loooooooooomoooooooooon

n times

“ npq.

Now let me introduce a new idea. Suppose that we are performing the sequence of coin flips
because want to estimate the unknown value of p. In this case we might also compute the
average of our n observed values. We will call this the sample average, or the sample mean:

X “
1

n
pX1 `X2 ` ¨ ¨ ¨ `Xnq “

1

n
¨ ΣX.

It is easy to compute the expected value and variance of X. We have

E
“

X
‰

“ E

„

1

n
¨ ΣX



“
1

n
¨ ErΣXs “

np

n
“ p

and

Var
`

X
˘

“ Var

ˆ

1

n
¨ ΣX

˙

“
1

n2
¨VarpΣXq “

npq

n2
“
pq

n
.

Each of these formulas has an interesting interpretation:

• The formula ErXs “ p tells us that, on average, the sample average will give us the
true value of p. In statistics jargon we say that the random variable X is an unbiased
estimator for the unknown parameter p.

• The formula VarpXq “ pq{n tells us that our guess for p becomes more accurate when
we flip the coin more times. If we could flip the coin infinitely many times then we would
be guaranteed to get the right answer:

VarpXq “
pq

n
Ñ 0 as nÑ8.

This statement goes by a fancy name: The Law of Large Numbers. It is basically a
guarantee that statistics works, at least in theory.

We have proved all of this for coin flipping, but it turns out that the same results hold for any
experiment, as long as the following assumptions are satisfied.
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The Idea of a Random (iid) Sample

Suppose we want measure some property of a physical system. For this purpose we will
take a sequence of measurements, called a random sample:

X1, X2, X3, . . . .

Since the outcomes are unknown in advance, we treat each measurement Xi as a random
variable. Under ideal conditions we will make two assumptions:

• We assume that the Xi are mutually independent. That is, we assume that the
result of one measurement does not affect the result of any other measurement.

• We assume that the whole system is stable. That is we assume that each measure-
ment Xi is identically distributed with ErXis “ µ and VarpXiq “ σ2. The mean
µ represents the unknown quantity we are trying to measure and the variance σ2

represents the amount of error in our measurement.

When these assumptions hold we say that the sequence X1, X2, X3, . . . is an iid sample
(independent and identically distributed).

A random sample in the physical sciences is much more likely to be iid than a random sample
in the social sciences. Nevertheless, it is usually a good starting point.

The following two theorems explain why we care about iid samples. They go by the acronyms
LLN and CLT.

The Law of Large Numbers (LLN)

Suppose that X1, X2, . . . , Xn is an iid sample with mean ErXis “ µ and variance
VarpXiq “ σ2. In order to esimate µ we compute the sample mean:

X “
1

n
¨ pX1 `X2 ` ¨ ¨ ¨ `Xnq.

How accurate is X as an estimate for µ?

Since the Xi are identically distributed we have

ErXs “
1

n
¨ pErX1s ` ¨ ¨ ¨ ` ErXnsq

“
1

n
¨ pµ` µ` ¨ ¨ ¨ ` µq “

1

n
¨ nµ “ µ.
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and since the Xi are independent we have

VarpXq “
1

n2
¨ pVarpX1q ` ¨ ¨ ¨ `VarpXnqq

“
1

n2
¨ pσ2 ` σ2 ` ¨ ¨ ¨ ` σ2q “

1

n2
¨ nσ2 “

σ2

n
.

The equation ErXs “ µ says that X is an unbiased estimator for µ. In other words, it
gives us the correct answer on average. The equation VarpXq “ σ2{n tells us that

VarpXq “
σ2

n
Ñ 0 as nÑ8.

In other words:

more observations ùñ more accurate estimate

The LLN was first proved in the case of coin flipping by Jacob Bernoulli in his book Ars
Conjectandi (1713).50 This result says that the error in the sample mean will eventually go
to zero if we take enough observations. However, for practical purposes we would like to be
able to compute the error precisely. This is what the de Moivre-Laplace Theorem does in the
special case of coin flipping.

Suppose that X1, . . . , Xn is a sequence of iid Bernoulli random variables with ErXis “ p
and VarpXiq “ pq. Then the sum ΣX “ X1 ` ¨ ¨ ¨ ` Xn is binomial with ErΣXs “ np and
VarpΣXq “ npq and the sample mean X “ ΣX{n satisfies

ErXs “ p and VarpXq “
npq

n2
“
pq

n
.

The de Moivre-Laplace theorem gives us much more information by telling us that each of X
and X has an approximately normal distribution:

ΣX « Npnp, npqq and X « N
´

p,
pq

n

¯

.

The Central Limit Theorem tells us that this result (surprisingly) has nothing to do with coin
flips. In fact, the same statement holds for any iid sequence of random variables.

The Central Limit Theorem (CLT)

Suppose that X1, X2, . . . , Xn is an iid sample with ErXis “ µ and VarpXiq “ σ2. Let us

50Indeed, in this case each sample Xi is a “Bernoulli” random variable.
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consider the sum ΣX “ X1 ` ¨ ¨ ¨ `Xn and the sample mean

X “
1

n
¨ ΣX “

1

n
¨ pX1 `X2 ` ¨ ¨ ¨ `Xnq.

We already know from the LLN above that ErΣXs “ nµ, VarpΣXq “ nσ2, ErXs “ µ
and VarpXq “ σ2{n. The CLT tells us, furthermore, that when n is large each of these
random variables is approximately normal:

ΣX « Npnµ, nσ2q and X « N

ˆ

µ,
σ2

n

˙

.

In other words:

The sum of an iid sample is approximately normal.

It is impossible to overstate the importance of the CLT for statistics. It is really the funda-
mental theorem of the subject.51 In the next two sections we will pursue various applications.
For now, let me illustrate the CLT with a couple of examples.

Visual Example. Suppose that X1, X2, X3, . . . is an iid sequence of random variables in
which each Xi has the following very jagged pdf:

Now consider the the sum of n independent copies:

ΣnX “ X1 `X2 ` ¨ ¨ ¨ `Xn.

51The proof is not very difficult but it involves “moment generating functions,” which are outside the scope
of this course.

147



It is difficult to compute the pdf of ΣnX by hand, but my computer knows how to do it.52

Here are the pdf’s of the sums Σ2X, Σ3X and Σ4X together with their approximating normal
curves, as predicted by the CLT:

The pdf’s are still rather jagged but you can see that they are starting to smooth out a bit.
After adding seven independent observations the smoothing becomes very noticeable. Here is
the pdf of Σ7X:

As you can see, the area under the normal curve is now a reasonable approximation for the
area under the pdf. After twelve observations there is almost no difference between the pdf of
Σ12X and the normal curve:

52If fX and fY are the pdf’s of independent random variables X and Y , then the pdf of X ` Y is given by
the convolution:

fX`Y pxq “

ż 8

´8

fXptqfY px´ tq dt.
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Computational Example. Suppose that a fair six-sided die is rolled 100 times and let Xi

be the number that shows up on the i-th roll. Since the die is fair, each random variable Xi

has the same pmf, given by the following table:

k 1 2 3 4 5 6

P pXi “ kq 1
6

1
6

1
6

1
6

1
6

1
6

From this table one can compute that

µ “ ErXis “
7

2
“ 3.5 and σ2 “ VarpXiq “

35

12
“ 2.92.

Now let us consider the average of all 100 numbers:

X “
1

100
¨ pX1 `X2 ` ¨ ¨ ¨ `X100q.

Assuming that the dice rolls are independent, we know that

ErXs “ µ “ 3.5 and VarpXq “
σ2

100
“ 0.0292.

This means that the sample average X is (on average) very close to the true average µ “ 3.5.
To be specific, let us compute the probability that |X ´ 3.5| is larger than 0.3. The Central
Limit Theorem tells us that X is approximately normal:

X « Npµ “ 3.5, σ2 “ 0.0292q.

Therefore pX ´ µq{σ is approximately standard normal:

X ´ µ

σ
“
X ´ 3.5
?

0.0292
« Np0, 1q.
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Now we can standardize and look up the desired probability in a table of Z-scores:

P p|X ´ 3.5| ą 0.3q “ P pX ă 3.2 or X ą 3.8q

“ P pX ă 3.2q ` P pX ą 3.8q

“ P

ˆ

X ´ 3.5
?

0.0292
ă

3.2´ 3.5
?

0.0292

˙

` P

ˆ

X ´ 3.5
?

0.292
ą

3.8´ 3.5
?

0.292

˙

“ P

ˆ

X ´ 3.5
?

0.0292
ă ´1.76

˙

` P

ˆ

X ´ 3.5
?

0.0292
ą 1.76

˙

« Φp´1.76q ` r1´ Φp1.76qs

“ r1´ Φp1.76qs ` r1´ Φp1.76qs

“ 2 r1´ Φp1.76qs

“ 2 r1´ 0.9608s

“ 7.84%.

In summary: If you roll a fair die 100 times and let X be the average of the numbers that
show up, then there is a 7.84% chance of getting X ă 3.2 or X ą 3.8. Equivalently, there is
a 92.16% chance of getting

3.2 ă X ă 3.8.

Here is a picture of the approximating normal curve, with vertical lines indicating standard
deviations. I won’t bother to draw the actual histogram of the discrete variable X because
the bars are so skinny.53

53I didn’t even bother to use a continuity correction in the computation.
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Finally, let me mention without proof the following important “stability theorem” for normal
random variables.

Stability Theorem for Normal Distributions

Let X,Y be normal random variables and let α, β P R be any constants. If X and Y are
independent then the linear combination

αX ` βY is also normal.

It follows from this that if X1, X2, . . . , Xn is an iid sample from a normal distribution
with mean µ and variance σ2 then the sum ΣX and the sample mean X are exactly
normal. (Not just approximately normal, as predicted by the CLT.)

The method of proof is exactly the same as would be used to prove the CLT. Namely: The
moment generating function of a sum of independent random variables is equal to the product
of the moment generating functions. This is beyond the scope of our course.

3.6 Hypothesis Testing

Now we are ready to do statistics. Let us begin with the first historical example of a hypothesis
test. This appeared in the Mémoire sur les probabilités (1781), by Pierre-Simon Laplace.

Laplace’s Problem

Between the years 1745 and 1770, records indicate that in the city of Paris there were
born 251,527 boys and 241,945 girls. If we treat each birth as a coin flip with P pboyq “ p
and P pgirlq “ q “ 1´ p, should we we take this as evidence that p ą 1{2? That is:

Are boys more likely than girls?

Laplace solve this problem with so-called “Bayesian methods.” (We will discuss this in Section
3.8 below.) For now we will use an easier “frequentist method” based on the Central Limit
Theorem. The beginning of any hypothesis test is to officially state the default assumption,
or the most uninteresting possibility. Since the pioneering work of Ronald Fisher54 this

54He published this method in the Statistical methods for research workers (1925).
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statement is known as the null hypothesis (H0) of the test. In our case the most uninteresting
possibility is

H0 “ “p “
1

2
” “ “the probabilities of boys and girls are the same.”

For Laplace, the alternative situation that is suggested by the data is “p ą 1{2.” Since the
work of Neyman and Pearson this is called the alternative hypothesis (H1) of the test:

H1 “ “p ą
1

2
” “ “boys are more likely than girls.”

Next we must decide on the significance level α (also known as a “p-value”55) for the test.
This is the “amount of surprise” in the data that would cause us reject the null hypothesis
in favor of the alternative hypothesis. If the data are more surprising than α then we will
claim that the result is statistically significant. Since the work of Ronald Fisher the traditional
weakest level of significance is α “ 5%.56 In words:

Any data that are less than 5% likely to occur (assuming that the null hypothesis
is true) will cause us to reject the null hypothesis. Otherwise we will “fail to reject”
the null hypothesis.

Finally, we need to perform a calculation to determine the actual “amount of surprise” in our
data. There may be several ways to do this. I will use the easiest method.

In Laplace’s Problem there were a total of n “ 251, 527 ` 241, 945 “ 493, 472 births in Paris
between the years 1745 and 1770. We will treat the number of boys B as a random variable
and we will use the sample proportion

p̂ “
B

n
“

# boys

total # births
.

as an estimator for the unknown statistic p “ P pboyq. Since B is by assumption a binomial
random variable with parameters n, p we know that

ErBs “ np and hence Erp̂s “ E

„

B

n



“
1

n
¨ ErBs “

1

n
¨ np “ p.

[Jargon: Since Erp̂s “ p we say that p̂ is an unbiased estimator for p.] Now observe that the
data gives a value of B “ 251, 527 and hence p̂ “ 251527{493472 “ 50.97%. If we assume that
H0 (i.e., that p “ 1{2) then this result is 0.97% above the expected value

p̂´ 1{2 “ 0.5097´ 0.5 “ 0.0097 “ 0.97%.

55Warning: The p in “p-value” stands for “probability.” Do not confuse it with the probability of heads.
56Lately this has been controversial. Many scientific papers claiming results at the “5% level of significance”

have been called into question because other scientists have not been able to replicate the results. Some people
suggest that the number 5% is too high, or “not surprising enough” to count as significant.
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To quantify the surprise,57 we will compute the probability of getting a result at least this
far above the exected value:

P pwe get p̂´ 0.5 ą 0.0097, assuming that H0 is trueq “ ?

This computation is quite difficult, but we can can get an approximation by using the CLT.
Since B is a binomial random variable with µ “ np “ 246736 and σ2 “ npq “ 123368 we
know that pB ´ npq{

?
npq “ pB ´ 246736q{

?
123368 is approximately standard normal. We

will omit the notation “|H0” to save space:

P pp̂´ 0.5 ą 0.0097q “ P pp̂´ 0.5 ą 0.0097q

“ P pp̂ ą 0.5097q

“ P

ˆ

B

493472
ą 0.5097

˙

“ P pB ą 251527q

“ P

ˆ

B ´ 246736
?

123368
ą

251527´ 246736
?

123368

˙

« P

ˆ

Z ą
251527´ 246736

?
123368

˙

“ P pZ ą 13.64q

“ 0%.

This probability is so small that it might as well be zero. In any case, it is definitely smaller
than the 5% cutoff for statistical significance. Therefore we conclude with Laplace that

boys are more likely than girls.58

In other words:

We reject the null hypothesis “p “ 1{2” in favor of the alternative hypothesis “p ą 1{2.”

In fact, the data points quite strongly in this direction. Out of curiosity, what is the weakest
result that would have caused us to reject the null hypothesis at the 5% level? In this case we
are looking for some number such that

P pZ ą eq “ 0.05.

My table tells me that e « 1.645. Then we can run the same computation in reverse, assuming
the same number of total births:

5% « P pZ ą 1.645q

57If the alternative hypothesis was “p ă 1{2” we would compute the probability of getting a result at least
this far below the expected value. If we don’t know which direction to expect we can use the two-sided
alternative “p ‰ 1{2” and compute the probability of being at least this far from the mean.

58It is also quite possible that the data is biased in some way.
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« P

ˆ

B ´ 246736
?

123368
ą 1.645

˙

“ P pB ´ 246736 ą 577.79q

“ P pB ą 247313.79q .

In other words:

Any number of boys B ą 247313.79 in n “ 493472 births is statistically significant.

Equivalently, any value of the estimator p̂ “ B{n greater than 247313.79{493472 “ 0.5012 is
statistically significant. We might say that 0.5012 is the critical value of the test.

Here is the general method.

Hypothesis Testing

Let X be a random variable with an unknown distribution and let θ be some (constant,
unknown) parameter of the distribution (such as the mean or the variance) that we want
to estimate. To do this we will take a random sample X1, X2, . . . , Xn and let θ̂ be some
estimator that we can compute from the sample data. We call this an unbiased estimator
if Erθ̂s “ θ. Consider the null hypothesis

H0 “ “θ “ θ0” for some specific real number θ0

and the alternative hypothesis

(1) H1 ““θ ą θ0,”

(2) H1 ““θ ă θ0,”

(3) H1 ““θ ‰ θ0.”

Let α be the desired statistical significance for the test (the p-value) and suppose we can
find real numbers k1, k2, k3 satisfying the following conditional probability:

P pθ̂ ą θ0 ` k1|H0q “ P pθ̂ ă θ0 ´ k2|H0q “ P p|θ̂ ´ θ0| ą k3|H0q “ α.

Then we will reject H0 in favor of H1 under the following condition:

(1) θ̂ ą θ0 ` k1,

(2) θ̂ ă θ0 ´ k2,

(3) |θ̂ ´ θ0| ą k3.

This condition for θ̂ is called the critical region of the test and ki (with i “ 1, 2 or 3) is
sometimes called the critical value of the test.59 In other words:
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We reject H0 in favor of H1 when θ̂ is more extreme than the critical value.

The hard part is to actually compute the critical value of the test. This is easiest to do when
the test statistic is related to the mean of a normal distribution. We will discuss two versions
of this test. The first is legitimately interesting. The second is only interesting because we
know the answer. In both examples we will make use of the following notation.

Normal Tail Probabilities (P -Values)

Let Z be a standard normal random variable. Then for any probability 0 ă α ă 1 there
exists a unique real number zα such that P pZ ą zαq “ α. Here is a picture:

It follows from this that we also have

P p|Z| ą zα{2q “ α and P p´zα{2 ă Z ă zα{2q “ 1´ α,

as in the following picture:

This notation is commonly used when describing critical values for hypothesis tests.

Now here is the first example. In a certain population of individuals, suppose that p is the
(unknown) proportion that have a certain property (e.g., have a certain disease, are male,

59Sometimes θ0 ` k or θ0 ´ k is called the critical value. It doesn’t matter.
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plan to vote in an election, etc.) Suppose that we have a natural guess for the value of p. Call
this the null hypothesis:

H0 “ “p “ p0.”

In order to test this hypothesis we will sample (or poll) n idividuals and let

Xi “

#

1 if the i-th individual has the property,

0 otherwise

We will assume that this sample is iid with

ErXis “ p and VarpXiq “ pp1´ pq.

In other words, we will assume that each individual is an independent coin flip60 with

P phas the propertyq “ p.

Then from the LLN and the CLT we can assume that sample mean X “ pX1 ` ¨ ¨ ¨Xnq{n is
approximately normal with

ErXs “ ErXis “ p and VarpXq “
VarpXiq

n
“
pp1´ pq

n
.

Since ErXs “ p we will use p̂ “ X as an unbiased estimator for the unknown p. Now let
0 ă α ă 1 be the desired statistical significance of the test and suppose that the alternative
hypothesis is

H0 “ “p ą p0.”

Then the critical value k must satisfy

P pX ą p0 ` k|H0q “ α.

Furthermore, if we assume that H0 is true (i.e., that p “ p0) then we know that

X ´ p
a

pp1´ pq{n
“

X ´ p0
a

p0p1´ p0q{n
is approximately standard normal.

Finally, using the notation P pZ ą zαq “ α for the right tail gives

P pZ ą zαq “ α

P

˜

X ´ p0
a

p0p1´ p0q{n
ą zα

¸

« α

P

˜

X ´ p0 ą zα ¨

c

p0p1´ p0q

n

¸

« α

60This is probably not accurate, but one can design the sampling experiment to make it as accurate as
possible. Experimental design is beyond the scope of this course.
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P

˜

X ą p0 ` zα ¨

c

p0p1´ p0q

n

¸

« α

In other words: We should reject the hypothesis “p “ p0” in favor of “p ą p0” whenever the
sample average satisfies

X ą p0 ` zα ¨

c

p0p1´ p0q

n
.

For example, in Laplace’s Problem above we had a sample of n “ 493472 births with hypothesis
P pboyq “ p “ p0 “ 1{2. Hence we should reject “p “ 1{2” in favor of “p ą 1{2” if the sample
average of boys satisfies

X ą p0 ` zα ¨

c

p0p1´ p0q

n
“

1

2
` zα ¨

c

p1{2qp1´ 1{2q

493472
“

1

2
` zα ¨

c

1

1973888
.

At the α “ 5% level of significance we have zα “ 1.645 and critical region

X ą
1

2
` 1.645 ¨

c

1

1973888
“ 50.12%.

At the α “ 1% level of significance we have zα “ 2.33 and critical region

X ą
1

2
` 2.33 ¨

c

1

1973888
“ 50.17%.

Here is a summary.

Hypothesis Test for a Proportion

Consider a population of individuals and let p be the unknown proportion that have a
certain property. Consider the null hypothesis

H0 “ “p “ p0” for some specific value 0 ă p0 ă 1

and the alternative hypothesis

(1) H1 ““p ą p0,”

(2) H1 ““p ă p0,”

(3) H1 ““p ‰ p0.”

In order to test the hypothesis we take a random sample of n individuals and let X
be the proportion of individuals in the sample that have the property (i.e., the sample
proportion). Let α be the desired significance of the test. Then we should reject H0 in
favor of H1 when X is in the critical region:

(1) X ą p0 ` zα ¨
a

p0p1´ p0q{n,

(2) X ă p0 ´ zα ¨
a

p0p1´ p0q{n,
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(3) |X ´ p0| ą zα{2 ¨
a

p0p1´ p0q{n.

Otherwise, we “fail to reject” H0.

Example Problem: In order to test whether a certain coin is fair, we flip the coin 1000 times
and get 530 heads. Is the coin fair?

Solution: Let X be the number of heads in the sample and let p “ P pHq be the true (unknown)
probability of heads. We will use X “ (# heads){1000 as an (unbiased) estimator for p. The
null hypothesis is

H0 “ “p “ 1{2” “ “the coin is fair”

and the alternative hypothesis is

H0 “ “p ‰ 1{2” “ “the coin is not fair.”

Therefore we will use a two-sided test. The critical region at the α level of significance is

|X ´ 1{2| ą zα{2 ¨

c

p1{2qp1´ 1{2q

1000
“ zα{2 ¨ 0.0158.

At the α “ 5% level of significance we have zα{2 “ 1.96 with critical region

|X ´ 1{2| ą 1.96 ¨ 0.0158 “ 0.031.

On the other hand, our experimental result is |X ´ 1{2| “ 530{100´ 1{2 “ 30{1000 “ 0.030.
Therefore we do not reject H0 in favor of H1. In other words: The coin might be fair.

The second version that we discuss is rather artificial. We include it because we know the
answer, and also because it is rather popular. This time I will only discuss the right-side test.
You can recover the left-side and two-sided test for yourself.

Hypothesis Test for the Mean of a Normal Distribution

Let X1, . . . , Xn be an iid sample from a normal distribution with variance σ2 (which may
be known or unknown) and unknown mean µ. Consider the null hypothesisH0 ““µ “ µ0”
and the alternative hypothesis H1 ““µ ą µ0’.” Let α be the desired significance and let
X “ pX1 ` ¨ ¨ ¨ `Xnq{n be the sample average, which satisfies

ErXs “ µ and VarpXq “
σ2

n
.

(1) From the Stability Theorem for Normal Distributions we know that pX ´ µq{
a

σ2{n
is exactly standard normal. Hence, if we know the value of σ2 then we will reject H0
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in favor of H1 whenever

X ´ µ0
a

σ2{n
ą zα or X ą µ0 ` zα ¨

c

σ2

n
.

(2) If σ2 is unknown then we have to estimate it. Define the sample variance61 as follows:

S2 :“
1

n´ 1

n
ÿ

i“1

pXi ´Xq
2.

If n is large (n ě 30) then pX ´ µq{
a

Sn{n is approximately standard normal, so
we can use the same critical region:

X ´ µ0
a

S2{n
ą zα or X ą µ0 ` zα ¨

c

S2

n
.

However, if n is small (n ă 30) then we must use the fact that pX ´ µq{
a

Sn{n has an
exact t-distribution with n ´ 1 degrees of freedom.62 Therefore we reject H0 in
favor of H1 whenever

X ´ µ0
a

S2{n
ą tαpn´ 1q or X ą µ0 ` tαpn´ 1q ¨

c

S2

n
.

The numbers tαpn´ 1q can be looked up in a table of “t-scores.”

Example Problem: Over several years, a professor has recorded an average score of 75{100 for
students in a certain course. This semester the professor has 10 students with the following
scores out of 100:

65 73 76 77 80 83 84 87 93 96

Note that the class average is X “ p65`73`76`77`80`83`84`87`93`96q{10 “ 81.4, which
is higher than 75. Is this class really better than average, or is it just a random fluctuation?

Solution: Based on our limited knowledge, the only hope is to assume that these n “ 10

61It might seem strange that we include n´ 1 in the denominator instead of n. We do this to ensure that S2

is an unbiased estimator for the population variance: ErS2
s “ σ2. You will verify this on the homework.

62The t-distribution is sometimes called Student’s t-distribution. It was described in a 1908 publication by
William Sealy Gossett. For some reason he wanted to remain anonymous so he published the paper under the
name “Student.” The formula for the pdf involves the Gamma function so I won’t bother to state it.
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scores come from a normal distribution.63 In this case we can assume that

X ´ µ
a

S2{10
has a t-distribution with 9 degrees of freedom,

where µ is the (unknown) mean of the current class and S2 is the sample variance, which we
compute as follows:

S2 “
1

n´ 1

n
ÿ

i“1

pXi ´Xq
2

“
1

9

“

p65´ 81.4q2 ` p73´ 81.4q2 ` ¨ ¨ ¨ ` p96´ 81.4q2
‰

“ 86.49.

We want to test the null hypothesis

H0 “ “µ “ 75” “ “this class is average”

against the alternative hypothesis

H1 “ “µ ą 75” “ “this class is above average.”

The critical region for the test is

X ´ 75
a

S2{10
ą tαp9q at the α level of significance

and my table of t-scores tells me that

t0.050p9q “ 1.833 and t0.025p9q “ 2.262.

On the other hand, plugging in the experimental values of X and S2 gives

X ´ 75
a

S2{10
“

81.4´ 75
a

86.49{10
“ 2.176.

We conclude that this class is above average at the 5% level of significance, but not at the
2.5% level of significance. Make of that what you will.

3.7 Confidence Intervals

We discussed the idea of a confidence interval in the introduction to this chapter. Now let me
describe the general situation.

63There is a way to test this assumption, called a quantile-quantile plot or a Q-Q plot. To do this, have
your computer spit out 10 random numbers from a normal distribution with mean X “ 81.4 and variance
S2
“ 86.49. Order these numbers from smallest to largest and pair them up with the students’ scores. Now

plot the 10 points in the plane. If they tend to form a straight line then the assumption of normality is probably
correct.
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Confidence Intervals

Let X be a random variable with unknown distribution and let θ be some (constant,
unknown) parameter of the distribution. Let X1, . . . , Xn be a sample from X and let θ̂
be some estimator for θ that can be calculated from the sample. Let 0 ă α ă 1 be any
desired level of significance and suppose that we can find real numbers e1, e2, e3 with the
following properties:

P pθ̂ ´ e1 ă θq “ P pθ ă θ̂ ` e2q “ P pθ̂ ´ e3 ă θ ă θ̂ ` e3q “ 1´ α.

Then we will say that the following regions are p1´ αq100% confidence intervals for θ:

(1) θ̂ ´ e1 ă θ ă 8,

(2) ´8 ă θ ă θ̂ ` e2,

(3) θ̂ ´ e3 ă θ ă θ̂ ` e3.

Let me emphasize that the unknown θ is constant, while the estimator θ̂ is random,
depending on the outcome of the experimental sample. We interpret a confidence interval
by saying that “the randomly generated interval has a p1´αq100% chance of containing
the unknown constant.”64

Again, we will only describe two versions of confidence intervals, which are (relatively) easy
to compute because they are related to the mean of a normal distribution.

First, let p be the unknown proportion of “yes voters” in a certain population. To estimate p
we take a random poll of n voters and let

Xi “

#

1 if the i-th voter says “yes,”

0 otherwise.65

As before, we will design the polling procedure to ensure that this sample is as close to iid as
possible. Then we can assume that the sample proportion

p̂ “ X “
X1 ` ¨ ¨ ¨ `Xn

n
“

# yes voters in the sample

n

is approximately normal with mean p and variance pp1 ´ pq{n.66 In order to compute a
(symmetric) two-sided p1 ´ αq100% confidence interval, we are looking for some number e

64The Bayesian interpretation is quite different. In that setting we attach to the unknown constant θ a
probability distribution which describes our current (prior) knowledge or belief about θ. After performing an
experiment we can update this to a new (posterior) distribution by incorporating the new information. The
procedure can then be repeated. See the Epilogue below.

66Take a moment to remind yourself why this is true.
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(called the “margin of error”) that has the following property:

P pp̂´ e ă p ă p̂` eq “ 1´ α.

[Interpretation: The random interval p̂ ˘ e has a p1 ´ αq100% chance of containing the un-
known constant p.] In order to compute e we will use the fact that pp̂ ´ pq{

a

pp1´ pq{n is
approximately standard normal. Thus we have

P

˜

´zα{2 ă
p̂´ p

a

pp1´ pq{n
ă zα{2

¸

« 1´ α

P

˜

´zα{2 ¨

c

pp1´ pq

n
ă p̂´ p ă zα{2 ¨

c

pp1´ pq

n

¸

« 1´ α

P

˜

´zα{2 ¨

c

pp1´ pq

n
ă p´ p̂ ă zα{2 ¨

c

pp1´ pq

n

¸

« 1´ α

P

˜

p̂´ zα{2 ¨

c

pp1´ pq

n
ă p ă p̂` zα{2 ¨

c

pp1´ pq

n

¸

« 1´ α.

Thus we obtain the following margin of error:

e “ zα{2 ¨

c

pp1´ pq

n
.

Sadly, this formula contains the unknown p. Next comes the worst mathematical sin of the
entire course: If n is large enough, we will assume that the estimate p̂ is close enough to the
true value of p that we can replace p by p̂ in the margin of error:

e « zα{2 ¨

c

p̂p1´ p̂q

n
.

To me that seems like circular reasoning, but I suppose one could prove a theorem to guarantee
that it is not so bad. Anyway, this is by far the most popular way to compute a confidence
interval for a proportion.67

Confidence Intervals for a Proportion

Let p be the unknown proportion of individuals in a population that have a certain
property. Suppose that a random sample of n individuals is taken and compute the

67The following p1´ αq100% confidence interval for p is mathematically correct, but it is hard to memorize:

p̂` z2α{2{p2nq ˘ zα{2 ¨
b

p̂p1´ p̂q{n` z2α{2{p4n
2q

1` z2α{2{n
.

I think a Bayesian confidence interval is even better, but for that you need a computer. See the Epilogue.
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sample proportion:

p̂ “
# in the sample that have the property

n
.

Then we have the following p1´ αq100% confidence intervals for p:

(1) p̂´ zα ¨
a

p̂p1´ p̂q{n ă p ă 8,

(2) ´8 ă p ă p̂` zα ¨
a

p̂p1´ p̂q{n,

(3) p̂´ zα{2 ¨
a

p̂p1´ p̂q{n ă p ă p̂` zα{2 ¨
a

p̂p1´ p̂q{n.

Interpretation: Each of these random intervals has an approximately p1 ´ αq100%
chance of containing the unknown constant p.

Example Problem: Let p be the unknown proportion of “yes voters” in a certain population
of voters. Suppose that a random sample of n “ 1500 voters is polled and 768 say “yes.”
Compute (symmetric, two-sided) confidence intervals for p at the 90%, 95% and 99% levels of
confidence.

Solution: Our sample proportion is p̂ “ 768{1500 “ 51.2%. So the general (symmetric,
two-sided) p1´ αq100% confidence interval has the form

p “ p̂˘ zα{2 ¨

c

p̂p1´ p̂q

n
“ 0.512˘ zα{2 ¨ 0.0129.

At the confidence levels p1 ´ αq100% “ 90%, 95% and 99% we have α “ 10%, 5% and 1%,
respectively. Then my table of z-scores tells me that

z0.1{2 “ 1.645, z0.05{2 “ 1.96 and z.01{2 “ 2.58.

Thus we report the following confidence intervals:

p “ 51.2%˘ 2.1% with 90% confidence,

p “ 51.2%˘ 2.6% with 95% confidence,

p “ 51.2%˘ 3.3% with 99% confidence.

Interpretation: We performed a random experiment and computed an interval. This interval
had an approximately p1´ αq100% chance of containing the unknown value p. Make of that
what you will.

The second version that we will discuss has to do with the unknown mean of a normal pop-
ulation. At this point I think I can safely state the general result without going through the
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details again. Furthermore, I will only discuss symmetric, two-sided confidence intervals. You
can recover the one-sided versions for yourself.68

Confidence Intervals for the Mean of a Normal Distribution

Let X1, X2, . . . , Xn be an iid sample from a normal distribution with variance σ2 (which
may be known or unknown) and unknown mean µ. From the Stability Theorem for
Normal Distributions we know that the sample mean µ̂ “ X “ pX1 ` ¨ ¨ ¨ ` Xnq{n is
exactly normal with

Erµ̂s “ µ and Varpµ̂q “
σ2

n
.

We conclude that the following is an exact p1´ αq100% confidence interval for µ:

µ̂´ zα{2 ¨

c

σ2

n
ă µ ă µ̂` zα{2 ¨

c

σ2

n
.

(1) If the variance σ2 is known then we report the above interval.

(2) If the variance is not known then we compute the sample variance:

S2 “
1

n´ 1

n
ÿ

i“1

pXi ´ µ̂q
2.

If n is large (n ě 30) then we can assume that pµ̂ ´ µq{
a

S2{n is approximately
standard normal, so we have the following p1´ αq100% confidence interval:

µ̂´ zα{2 ¨

c

S2

n
ă µ ă µ̂` zα{2 ¨

c

S2

n
.

If n is small (n ă 30) then we use the fact that pµ̂ ´ µq{
a

S2{n has an exact t-
distribution with n´ 1 degrees of freedom to obtain

µ̂´ tα{2pn´ 1q ¨

c

S2

n
ă µ ă µ̂` tα{2pn´ 1q ¨

c

S2

n
.

Example Problem: A certain brand of chips has a label weight of 45 grams. In order to
determine if the label is accurate, 12 bags of chips are chosen at random and weighed, giving

68For that matter, you can compute an asymmetric two-sided interval if you really want one. You only need
to find two numbers `` and rα such that P p`α ă Z ă rαq “ 1´ α.
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the following results:

41.6 40.4 46.9 39.2 49.1 50.4 49.6 51.1 38.1 44.3 48.9 46.5

Assuming that the weights are normally distributed, compute a (symmetric, two-sided) 95%
confidence interval for the mean µ of the underlying distribution.

Solution: Our estimator for µ is the sample mean:

µ̂ “ X “
1

12
p41.6` 40.4` ¨ ¨ ¨ ` 46.5q “ 45.508.

Since the population variance σ2 is unknown, we also compute the sample variance:

S2 “
1

11

“

p41.6´ 45.508q2 ` p40.4´ 45.508q2 ` ¨ ¨ ¨ ` p46.5´ 45.508q2
‰

“ 21.534.

Now we are looking for a p1 ´ αq100% “ 95% confidence interval, so α “ 5%. Since the
variance is unknown and the number of data points is small (n ă 30) we will use the fact
that pµ̂´ µq{

a

S2{n has a t-distribution with n´ 1 “ 11 degrees of freedom. I looked up the
relevant t-value in a table:

tα{2p11q “ t0.025p11q “ 2.201.

Then we obtain the following 95% confidence interval for µ:

µ̂´ tα{2pn´ 1q ¨
b

S2

n ă µ ă µ̂` tα{2pn´ 1q ¨
b

S2

n

µ̂´ t0.025p11q ¨
b

S2

12 ă µ ă µ̂` t0.025p11q ¨
b

S2

12

45.508´ 2.201 ¨
b

21.534
12 ă µ ă 45.508` 2.201 ¨

b

21.534
12

42.6 ă µ ă 48.5.

In other words: Assuming that the weight of a bag of chips is normally distributed, we are
95% confident that the average weight of a bag of chips is between 42.6 and 48.5 grams. That
seems to agree with the label weight. On the other hand, I’m a bit worried about the large
variance. We’ll see how to estimate that in the next section.

3.8 Variance and Goodness of Fit

In the previous two sections we used a hypothesis test to determine whether a coin is fair, and
we computed confidence intervals for the unknown probability of heads. What about dice?

The difficulty here is that the fairness of a die is not determined by just one number. Consider
an s-sided die and let pi “ P pthe i-th face shows upq. From the definition of probability we
must have:
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• 0 ď pi ď 1 for all i,

• p1 ` p2 ` ¨ ¨ ¨ ` ps “ 1.

Note that the distribution is determined by any s ´ 1 of the numbers, say p1, p2, . . . , ps´1.
Then the final probability is given by ps “ 1´ pp1 ` ¨ ¨ ¨ ` ps´1q. For this reason we say that
that the distribution has s´ 1 degrees of freedom.

In order to determine whether the die is fair, suppose that we roll the die n times and let Ni

be the number of times that the i-th face shows up. I claim that

ErNis “ npi and VarpNiq “ npip1´ piq.

Proof: We can can temporarily think of the die as a coin with “heads”=“side i” and “tails”=“any
other side.” Since the die rolls are independent it follows that Ni is a binomial random variable
with pi “ P pheadsq. ˝

In particular, if the die is fair then we will have pi “ 1{s and hence ErNis “ n{s for all i. If
we perform the experiment and all of the numbers Ni are far away from n{s then we will have
to conclude that the die is not fair. But how can we measure this with a single statistic? Karl
Pearson came up with a clever answer in 1900.

Pearson’s Chi-Squared Statistic

Let Z1, . . . , Zr be an iid sample from a standard normal distribution. Then we say that
the sum of squares has a chi-squared distribution with r degrees of freedom:

Z2
1 ` Z

2
2 ` ¨ ¨ ¨ ` Z

2
r „ χ2prq.

These distributions have been extensively tabulated. Now consider an s-sided die with
P pside iq “ pi. Suppose the die is rolled n times and let Ni be the number of times that
side i shows up. Then we define the following so-called chi-squared statistic:69

X2 :“
s
ÿ

i“1

pNi ´ npiq
2

npi
.

If n is large enough (say npi ě 10 for all i) then I claim that the random variable X2 has
an approximate chi-squared distribution with s´ 1 degrees of freedom:70

X2 « χ2ps´ 1q.

69Unfortunately the uppercase Greek χ looks just like the Roman X.
70Of course the “chi-squared statistic” should have a “chi-squared distribution” or somebody made a mistake.
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I will show you the proofs for s “ 2 and s “ 3. Feel free to skip this if you want. The general
result can be proved by induction using the same ideas, but the details are quite messy.

Proof: When s “ 2 we we have N1 `N2 “ n and p1 ` p2 “ 1. We can think of this as a coin
with p1 “ P pHq and p2 “ P pT q. The chi-squared statistic can be rearranged as follows:

X2 “
pN1 ´ np1q

2

np1
`
pN2 ´ np2q

2

np2
“

˜

N1 ´ np1
a

np1p1´ p1q

¸2

.

But recall that N1 (the number of heads) has a binomial distribution with parameters
n and p1. Then since np1 and np2 are both large, we know from the de Moivre-Laplace
Theorem that pN1 ´ np1q{

a

np1p1´ p1q is approximately standard normal. Therefore X2 is
approximately χ2p1q.

When s “ 3 we have N1 `N2 `N3 “ n and p1 ` p2 ` p3 “ 1. The chi-squared statistic can
be rearranged as follows:

X2 “
pN1 ´ np1q

2

np1
`
pN2 ´ np2q

2

np2
`
pN3 ´ np3q

2

np3

“

˜

N1 ´ np1
a

np1p1´ p1q

¸2

`

˜

N2p3 ´N3p2
a

np2p3pp2 ` p3q

¸2

.

As before, we know from the de Moivre-Laplace Theorem that U :“ pN1´np1q{
a

np1p1´ p1q
is approximately standard normal. Now consider the random variable

V :“
N2p3 ´N3p2

a

np2p3pp2 ` p3q
.

If we can prove that

• V is approximately standard normal,

• U and V are approximately independent,

then it will follow that X2 “ U2 ` V 2 is approximately χ2p2q. For the first point, we observe
that V has the form αN2`βN3, where α, β are constants. Since N2 and N3 are binomial and
since each of the numbers np2, np1 ´ p2q, np3, np1 ´ p3q is large we can assume that each of
N2 and N3 is approximately normal. Then it follows from the Stability Theorem for Normal
Distributions that αN1 ` βN2 is also approximately normal. It only remains to show that
ErV s “ 0 and VarpV q “ 1. This follows from an easy algebraic manipulation and the fact
that CovpN2, N3q “ ´np2p3, which you proved on a previous homework.

Thus we have shown that U and V are each approximately standard normal. In order to prove
that they are independent, it will suffice to show that CovpU, V q “ 0.71 This again follows
from a straightforward algebraic manipulation. ˝

71This is another special property of normal distributions.
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I find this proof unsatisfying because it doesn’t really explain why the theorem is true. A
more conceptual proof can be given that uses rotations in s-dimensional space. See the “Third
Proof” in the following paper: https://arxiv.org/abs/1808.09171

Let us now apply Pearson’s theorem. Suppose that we have a six-sided die with P pside iq “ pi.
Our null hypothesis is that the die is fair:

H0 “ “the die is fair” “ “pi “ 1{6 for all i.”

In order to test this hypothesis we will roll the die 300 times and let Ni be the number of
times that side i occurs. If the null hypothesis is true, then since npi “ 300{6 “ 50 is large
enough we can assume that the chi-squared statistic is approximately χ2p5q:

X2 “

6
ÿ

i“1

pNi ´ 50q2

50
« χ2p5q.

Note that X2 “ 0 when N1 “ N2 “ ¨ ¨ ¨ “ N6 “ 50 and X2 becomes larger when the numbers
Ni get farther away from the expected value of 50. The idea of the test is that a large value
of X2 should cause us to reject the null hypothesis that the die is fair. How large? Here is a
picture of the χ2p5q distribution:

We define the number χ2
αp5q so that P pX2 ą χ2

αp5qq « α. For example, at the α “ 10%, 5%
and 2.5% level of significance my table gives the following critical values:

χ2
0.10p5q “ 9.236, χ2

0.05p5q “ 11.07 and χ2
0.025p5q “ 12.83.

Suppose that we obtain the following results:

N1 N2 N3 N4 N5 N6

42 55 38 57 64 44

This data gives X2 “ 10.28.

If the null hypothesis is true, then since npi “ 300{50 is a large number we can assume that
the chi-squared statistic

If H0 is true then the numbers npi “ 300{6 “ 50 are large enough that the chi-squared statistic
is approximately χ2p5q.

Chi-Squared Goodness of Fit Test
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You may have noticed that the chi-squared statistic looks very similar to the sample variance.
Indeed, the chi-squared distribution was first studied by Friedrich Robert Helmert in the 1870s
because of its relationship to the sample variance of a normal population. Karl Pearson later
rediscovered the distribution in his 1900 work on goodness of fit.

Here is Helmert’s main theorem.

Sample Variance for a Normal Population

Let X1, X2, . . . , Xn be an iid sample from a normal distribution Npµ, σ2q. Consider the
sample mean and sample variance:

X “ pX1 ` ¨ ¨ ¨ `Xnq{n,

S2 “
“

pX1 ´Xq
2 ` ¨ ¨ ¨ ` pXn ´Xq

2
‰

{pn´ 1q.

Then I claim that the random variable pn´ 1qS2{σ2 has a chi-squared distribution with
n´ 1 degrees of freedom:

pn´ 1qS2

σ2
“

1

σ2
“

pX1 ´Xq
2 ` ¨ ¨ ¨ ` pXn ´Xq

2
‰

„ χ2pn´ 1q.

Proof Idea. It is easy to see that the random variable pn´1qS2{σ2 is approximately χ2pnq.
It is more difficult to show that it is exactly χ2pn´ 1q.

To end this chapter, we will use Helmert’s theorem to derive confidence intervals for the
variance of a normal population.

Confidence Intervals for the Variance of a Normal Distribution

sd

Bag of chips example.

Exercises 6

6.1. Let X1, X2, . . . , X15 be independent and identically distributed (iid) random variables.
Suppose that each Xi has pdf defined by the following function:

fpxq “

#

3
2 ¨ x

2 if ´1 ď x ď 1,

0 otherwise.

169



(a) Compute ErXis and VarpXiq.

(b) Consider the sum ΣX “ X1 `X2 ` ¨ ¨ ¨ `X15. Compute ErΣXs and VarpΣXq.

(c) The Central Limit Theorem says that ΣX is approximately normal. Use this fact to
estimate the probability P p´0.3 ď ΣX ď 0.5q.

6.2. Suppose that n “ 48 seeds are planted and suppose that each seed has a probability
p “ 75% of germinating. Let X be the number of seeds that germinate and use the Central
Limit Theorem to estimate the probability P p35 ď X ď 40q that between 35 and 40 seeds
germinate. Don’t forget to use a continuity correction.

6.3. Suppose that a certain six-sided die is rolled 24 times and let Xk be the number that
shows up on the kth roll. Let X “ pX1 ` X2 ` ¨ ¨ ¨ ` X24q{24 be the average number that
shows up.

(a) Assuming that the die is fair, compute the expected value and variance:

E
“

X
‰

and Var
`

X
˘

.

(b) If the die is fair, use the CLT to find a number c such that P
`

|X ´ 3.5| ą c
˘

“ 5%.

(c) Now consider the null hypothesis:

H0 “ “the die is fair.”

Suppose that you roll the die 24 times and get an average value of 4.5. Is the die fair?
In other words: Should you reject the null hypothesis at a 5% level of significance?

(d) Repeat the test at the 1% of significance.

6.?. A random sample of size 8 from Npµ, σ2 “ 72q yielded the sample mean X “ 85. Since
this is an unrealistic textbook problem, the exact value of the population standard deviation
is given to us:

σ “
?

72 “ 6
?

2 « 8.485.

Thus for any probability value 0 ă α ă 1 we obtain an exact p1´ αq100% confidence interval
for the population mean µ:

P

ˆ

X ´ zα{2 ¨
σ
?
n
ă µ ă X ´ zα{2 ¨

σ
?
n

˙

“ 1´ α,

P

ˆ

85´ zα{2 ¨

?
72
?

8
ă µ ă 85´ zα{2 ¨

?
72
?

8

˙

“ 1´ α,

P
`

85´ zα{2 ¨ 3 ă µ ă 85´ zα{2 ¨ 3
˘

“ 1´ α,

Use this to find the following confidence intervals:
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(a) p1´ αq100% “ 99%.

(b) p1´ αq100% “ 95%.

(c) p1´ αq100% “ 90%.

(d) p1´ αq100% “ 80%.

6.?. Let X be the weight in grams of a “52-gram” snack pack of candies. Assume that the
distribution of X is Npµ, σ2 “ 4q. A random sample of n “ 10 observations of X yielded the
following samples X1, . . . , X10:

55.95 56.54 57.58 55.13 57.48
56.06 59.93 58.30 52.57 58.46

6.?. Thirteen tons of cheese,72 including “22-pound” wheels (label weight), is stored in some
old gypsum mines. A random sample of n “ 9 of these wheels was weighed yielding the results
X1, X2, . . . , X9 as shown in the following table. Assuming that the distribution of weights is
Npµ, σ2q, use these data to find a 98% confidence interval for µ.

7.3-1. Let p be the proportion of flawed toggle levers73 that a certain machine shop manu-
factures. In order to estimate p a random sample of 642 levers was selected and it was found
that 24 of them were flawed.

(a) Give a point estimate for p. Solution: We will use the sample mean

p̂ “ X “
X

n
“

24

642
“ 3.74%.

In parts (b), (c) and (d) we will use three different formulas to compute 95% intervals for p.

(b) Since n “ 642 is relatively large we can use the simple formula

p̂˘ zα{2

c

p̂p1´ p̂q

n

with α “ 0.05. By substituting p̂ “ 0.0374, n “ 642 and zα{2 “ 1.96 we obtain

0.0374˘ 1.96 ¨

c

p0.0374qp1´ 0.0374q

642
“ 3.74%˘ 1.47%.

(c) We get a more accurate answer by using the following formula from page 319:

p̂` z2α{2{p2nq ˘ zα{2
b

p̂p1´ p̂q{n` z2α{2{p4n
2q

1` z2α{2{n

72whatever
73whatever
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By substituting p̂ “ 0.0374, n “ 642 and zα{2 “ 1.96 we obtain

0.0374` p1.96q2{p2 ¨ 642q ˘ 1.96 ¨
a

p0.0374qp1´ 0.0374q{642` p1.96q2{p4 ¨ p642q2q

1` p1.96q2{642

“ 4.01%˘ 1.49%.

(d) Since 3.74% is rather close to 0% we should also try the formula from page 321 which
works when p is close to 0 or 1. For this we use the biased estimator

p̃ “
X ` 2

n` 4
“

24` 2

642` 4
“ 4.02%.

Then we will use the confidence interval p̃ ˘ zα{2
a

p̃p1´ p̃q{pn` 4q. By substituting
p̃ “ 0.0402, n “ 642 and zα{2 “ 1.96 we obtain

0.0402˘ 1.96 ¨

c

p0.0402qp1´ 0.0402q

642` 4
“ 4.02%˘ 1.52%.

We observe that the result is closer to the more accurate formula in part (c), which
confirms that the strange estimator p̃ is good for extreme values of p.

(e) Finally, since p is very small, we might be interested in a one-sided confidence interval
for p. To compute a p1´ αq100% upper bound for p we can use any of the above three
formulas to obtain

P pp ă old upper bound with zα{2 replaced by zαq « 1´ α.

To compute a 95% upper bound for p we will substitute z0.05 “ 1.645 in the place of
z0.025 “ 1.96. By doing this in all three formulas we obtain upper bounds

4.97%, 5.18% and 5.29%,

respectively. I see that the back of the textbook reports the value 4.97%, which means
that they used the dumbest formula.

6.?. Let p equal the proportion of Americans who select jogging as one of their recreational
activities. If 1497 out of a random sample of 5757 selected jogging, find an approximate 98%
confidence interval for p.

6.?. A proportion, p, that many opinion polls estimate is the number of Americans who sould
say yes to the question, “If something were to happen to the president of the United States,
do you think that the vice president would be qualified to take over as president?” In one such
random sample of 1022 adults, 388 said yes.

(a) On the basis of the given data, find a point estimate of p.
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(b) Find an approximate 90% confidence interval for p.

6.?. Let X1, X2, . . . , Xn be independent samples from an underlying population with mean
µ and variance σ2. We have seen that the sample mean X “ pX1 `X2 ` ¨ ¨ ¨ `Xnq{n is an
unbiased estimator for the population mean µ because

ErXs “ µ.

The most obvious way to estimate the population variance σ2 is to use the formula

V “
1

n

n
ÿ

i“1

pXi ´Xq
2.

Unfortunately, you will show that this estimator is biased.

(a) Explain why ErX2
i s “ µ2 ` σ2 for each i.

(b) Use the linearity of expectation together with part (a) and the fact that
ř

Xi “ nX to
show that

ErV s “
1

n

´

Er
ÿ

X2
i s ´ 2ErX

ÿ

Xis ` ErnX
2
s

¯

“
1

n

´

npµ2 ` σ2q ´ nErX
2
s

¯

“ µ2 ` σ2 ´ ErX
2
s

(c) Use the formula VarpXq “ ErX
2
s ´ ErXs2 to show that

ErX
2
s “ µ2 ` σ2{n.

(d) Put everything together to show that

ErV s “
n´ 1

n
¨ σ2 ‰ σ2,

hence V is a biased estimator for σ2.

It follows that the weird formula

S2 “
n

n´ 1
¨ V “

1

n´ 1

n
ÿ

i“1

pXi ´Xq
2

satisfies

ErS2s “ E

„

n

n´ 1
¨ V



“
n

n´ 1
¨ ErV s “

�n

���n´ 1
¨
���n´ 1

�n
¨ σ2 “ σ2

and hence S2 is an unbiased estimator for σ2. We call it the sample variance and we call its
square root S the sample standard deviation. It is a sad fact that S is a biased estimator for
σ but you will have to take more statistics courses if you want to learn about that.
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Review of Key Topics

• Instead of a pmf fXpkq “ P pX “ kq, a continuous random variable X is defined by a
probability density function (pdf) fX : RÑ R. Here is a picture:

By definition the pdf must satisfy

fXpxq ě 0 for all x P R and

ż 8

´8

fXpxq dx “ 1.

Then for any real numbers a ď b we define

P pa ă X ă bq “

ż b

a
fXpxq dx.

Note that this implies P pX “ kq “ P pk ď X ď kq “ 0 for any k P R.

• Let fX : R Ñ R be the pdf of a continuous random variable X. Then we define the
expected value by the formula

ErXs “

ż 8

´8

x ¨ fXpxq dx.

Just as in the discrete case, this integral represents the center of mass of the distribution.
More generally, we define the rth moment of X by the formula

ErXrs “

ż 8

´8

xr ¨ fXpxq dx.

As with the discrete case, the variance is defined as the average squared distance between
X and its mean µ “ ErXs. That is, we have

VarpXq “ ErpX ´ µq2s
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“

ż 8

´8

px´ µq2 ¨ fXpxq dx

“

ż 8

´8

px2 ´ 2µx` x2q ¨ fXpxq dx

“

ˆ
ż 8

´8

x2 ¨ fXpxq dx

˙

´ 2µ

ˆ
ż 8

´8

x ¨ fXpxq dx

˙

` µ2
ˆ
ż 8

´8

fXpxq dx

˙

“ ErX2s ´ 2µ ¨ ErXs ` µ2 ¨ 1

“ ErX2s ´ 2µ2 ` µ2

“ ErX2s ´ µ2

“ ErX2s ´ ErXs2.

• The uniform distribution on a real interval ra, bs Ď R has the following pdf:

You should practice the definitions by proving that

ErXs “
a` b

2
and VarpXq “

pb´ aq2

12
.

• Let X be a discrete random variable with pmf P pX “ kq and let Y be a continuous
random variable with pdf fY . Suppose that for all integers k we have

P pX “ kq « fY pkq.

Then for any integers a ď b we can approximate the probability P pa ď X ď bq by the
area under the graph of fY , as follows:

P pa ď X ď bq «

ż b`1{2

a´1{2
fY ptq dt,

P pa ă X ď bq «

ż b`1{2

a`1{2
fY ptq dt,

P pa ď X ă bq «

ż b´1{2

a´1{2
fY ptq dt,
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P pa ă X ă bq «

ż b´1{2

a`1{2
fY ptq dt.

Here’s a picture illustrating the second formula:

• Let X be a (discrete) binomial random variable with parameters n and p. If np and
np1´ pq are both large then de Moivre (1730) and Laplace (1810) showed that

P pX “ kq “

ˆ

n

k

˙

pkp1´ pqn´k «
1

a

2πnpp1´ pq
e´pk´npq

2{2npp1´pq.

For example, let X be the number of heads in 3600 flips of a fair coin. Then we have

P p1770 ď X ď 1830q «

ż 1830`0.5

1770´0.5

1
?

1800π
e´px´1800q

2{1800 dx « 69.07%.

• In general, the normal distribution with mean µ and σ2 is defined by the following pdf:

npx;µ, σ2q “
1

?
2πσ2

e´px´µq
2{2σ2

.

We will write X „ Npµ, σ2q for any random variable with this pdf.

• The stability theorem says that if X and Y are independent normal variables and if
α, β, γ are constant then

αX ` βY ` γ is also normal.

• A special case of the above fact says that normal random variables can be standardized:

X „ Npµ, σ2q ðñ Z “
X ´ µ

σ
„ Np0, 1q.

If Z is standard normal then it has the following cumulative density function (cdf):

Φpzq “ P pZ ď zq “

ż z

´8

1
?

2π
e´x

2{2 dx.
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The values of Φpzq can be looked up in a table. Furthermore, for any probability
0 ă α ă 1 we define the critical value zα to be the unique number with the property

ż 8

zα

1
?

2π
e´x

2{2 dx “ P pZ ě zαq “ α.

These numbers can also be looked up in a table. Here are some pictures:

• Let X1, X2, . . . , Xn be an iid sample with µ “ ErXis and σ2 “ VarpXiq. If X “

pX1 ` ¨ ¨ ¨ `Xnq{n is the sample mean then we have

ErXs “ µ and VarpXq “ σ2{n.

The fact that VarpXq Ñ 0 as nÑ8 is called the Law of Large Numbers (LLN). If n is
large then the Central Limit Theorem (CLT) says that X is approximately normal:

X “
X1 ` ¨ ¨ ¨ `Xn

n
« Npµ, σ2{nq.

This is the most important theorem in all of (classical) statistics.

• Application: Estimating a proportion. Let p be proportion of yes voters in a population.
To estimate p we take a random sample of n voters and let Y be the number who
say yes. Then the sample proportion p̂ “ Y {n is an unbiased estimator for p because
Erp̂s “ p. Furthermore, since Varpp̂q “ pp1´ pq{n we know that pp̂´ pq{

a

pp1´ pq{n is
approximately Np0, 1q.

Thus we obtain the following approximate p1´ αq100% intervals for the unknown p:

p ă p̂` zα ¨
a

p̂p1´ p̂q{n,

p ą p̂´ zα ¨
a

p̂p1´ p̂q{n,

|p´ p̂| ă zα{2 ¨
a

p̂p1´ p̂q{n.

If we want to test the hypothesis H0 “ “p “ p0” at the α level of significance then we
use the following rejection regions:

p̂ ą p0 ` zα ¨
a

p0p1´ p0q{n if H1 “ “p ą p0, ”

p̂ ă p0 ´ zα ¨
a

p0p1´ p0q{n if H1 “ “p ă p0, ”

|p̂´ p0| ą zα{2 ¨
a

p0p1´ p0q{n if H1 “ “p ‰ p0.”
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• Application: Estimating a mean. Let X1, X2, . . . , Xn be an iid sample from a normal
distribution with ErXis “ µ and VarpXiq “ σ2. The sample mean X is an unbiased
estimator for µ because ErXs “ µ. Furthermore, since VarpXq “ σ2{n we know from
the stability theorem that X is exactly Npµ, σ2{nq.

If σ2 is known then we obtain the following exact p1´ αq100% intervals for µ:

µ ă X ` zα ¨
a

σ2{n,

µ ą X ´ zα ¨
a

σ2{n,

|µ´X| ă zα{2 ¨
a

σ2{n.

If we want to test the hypothesis H0 “ “µ “ µ0” at the α level of significance then we
use the following rejection regions:

X ą µ0 ` zα ¨
a

σ2{n if H1 “ “µ ą µ0, ”

X ă µ0 ´ zα ¨
a

σ2{n if H1 “ “µ ă µ0, ”

|X ´ µ0| ą zα{2 ¨
a

σ2{n if H1 “ “µ ‰ µ0.”

If σ2 is unknown then we replace it with the sample variance

S2 “
1

n´ 1

n
ÿ

i“1

pXi ´Xq
2.

If n is small then we also replace zα with tαpn´ 1q. This is because the random variable
pX ´ µq{

a

S2{n has a t-distribution with n´ 1 degrees of freedom.

• Chi-squared distributions. I’ll fill this in later.

4 Epilogue: Bayesian Estimation

To end this course I will give you a glimpse of Bayesian statistics, which is an alternative to
the more classical methods discussed in Chapter 3. Bayesian techniques are among the newest
and the oldest ideas in statistics. Oldest, because these were the first methods attempted by
Thomas Bayes and Pierre-Simon Laplace in the late 1700s. Newest, because these methods
only became practical after the availability of fast computers.

In Chapter 1 we discussed the notions of conditional probability and Bayes’ theorem. In fact,
the reverend Thomas Bayes (1701–1761) never published this result; his notes were edited and
published posthumously by Richard Price in 1763 under the title An Essay towards solving a
Problem in the Doctrine of Chances. Here is the problem in Bayes’ own words:
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Bayes’ Problem (1763)

Given the number of times in which an unknown event has happend and failed: Re-
quired the chance that the probability of its happening in a single trial lies somewhere
between any two degrees of probability that can be named.

In other words, we have a coin where p “ P pheadsq is unknown. In order to estimate p we
flip the coin n times and heads shows up k times. Given this information we want to compute
the probability that p falls between any two bounds:

P pa ă p ă bq “ ?

Here is a summary of our previous approach to the problem.

Classical Approach to the Problem. In the classical approach we think of p as an unknown
constant. If a and b are also constant then we must have

P pa ă p ă bq “ 0 or P pa ă p ă bq “ 1,

but we don’t know which one of these is true. Obviously, this is pretty useless. The classical
solution is to think of a and b as random variables depending on the outcome of a sampling
experiment. For example, let X be the number of heads in n flips of the coin. We think of
the estimator p̂ “ X{n is a random variable. Assuming that np and np1 ´ pq are both large
then the Central Limit Theorem tells us that

p̂´ p
a

p̂p1´ p̂q{n
is approximately standard normal.74

We used this fact to derive the following confidence interval:

P

˜

p̂´ zα{2

c

p̂p1´ p̂q

n
ă p ă p̂` zα{2

c

p̂p1´ p̂q

n

¸

« 1´ α.

In other words, the random interval

p̂˘ zα{2

c

p̂p1´ p̂q

n
,

which depends on the outcome of the experiment, has an approximately p1´αq100% chance of
containing the unknown constant p. However, this trick only worked because we specified the
probability 1´ α in advance. It seems hopeless so specify the endpoints a and b in advance.

74Some of the mathematics behind this is a bit dubious, for example the substitution of p̂ for p in the standard
deviation. Nevertheless, it should be okay for large enough n.
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Here is how Bayes and Laplace approached the problem.

Bayesian Approach to the Problem. Instead of viewing p as a constant, we will think of p
as a continuous random variable with a pdf that represents our partial knowledge of p. As we
gain information through experiments we will update the pdf to include this new information.

Before any experiments are performed, Bayes assumed that all values of p are equally likely.
In other words, he assumed that the prior density of p is uniform on the interval r0, 1s:

Thus we begin with the probability P pa ă p ă bq “ 1{pb´ aq for any 0 ă a ă b ă 1. In order
to gain more information about p we will flip the coin n times and let X be the number of
heads that show up. Suppose that we perform the experiment and get X “ k. How does this
change our knowledge of p? We want to compute the conditional probability of a ă p ă b,
assuming that X “ k is true:

P pa ă p ă b |X “ kq “ ?

Since p is continuous this probability should be defined by some posterior density fp|X“kptq:

P pa ă p ă b |X “ kq “

ż b

a
fp|X“kptq dt.

The posterior density describes our new knowledge about p. Here is a picture:
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The goal is to calculate a formula for the posterior density function fp|X“kptq. Without going
any further, let me just tell you the answer, which was discovered by Bayes.

The Bayes-Laplace Theorem

Consider an unknown coin with p “ P pheadsq. Our prior knowledge of p is described by
a uniform density:

fpptq “

#

1 0 ď t ď 1,

0 otherwise.

In order to estimate p we flip the coin n times and let X be the number of heads that
show up. If X “ k then Bayes gave a geometric argument that our posterior knowledge
of p has the following density:

fp|X“kptq “

#

pn` 1q
`

n
k

˘

tkp1´ tqn´k 0 ď t ď 1,

0 otherwise.

Laplace later used this formula to compute the expected value of p (assuming X “ k):

Erp|X “ ks “

ż

t ¨ fp|X“kptq dt “
k ` 1

n` 2
.

This is called Laplace’s rule of succession.

Here is a silly application called the “sunrise problem:”
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What is the probability that the sun will rise tomorrow?

We will assume that the sun is a coin that is flipped every morning, with p “ P priseq. Assume
that we have no knowledge about the sun, except for the fact that it has risen every day for
n days. By substituting k “ n into Bayes’ formula, we should should have the following belief
(credibility) that p falls between any two numbers 0 ď a ď b ď 1:

P pa ă p ă bq “

ż b

a
pn` 1q

ˆ

n

n

˙

tnp1´ tqn´n “

ż b

a
pn` 1qtn dt “ bn`1 ´ an`1.

Then Laplace’s integral formula75 says that we should expect the following value of p:

Erps “

ż 1

0
t ¨ pn` 1qtn dt “

n` 1

n` 2
.

In other words:

P psun will rise tomorrow | it has risen every day for n daysq “
n` 1

n` 2
.

This is correct mathematics, but you might disagree with the underlying assumptions.

The rest of this section is devoted to a proof of the Bayes-Laplace Theorem, and its applications
to confidence intervals and hypothesis testing. All of the hard mathematics is contained in
the following theorem.

A Tricky Integral

For any integers 0 ď k ď n we have

ż 1

0
tkp1´ tqn´k dt “

k!pn´ kq!

pn` 1q!
.

Proof. The proof is based on the following rearrangement:

1

pn` 1q
ş1
0 t
kp1´ tqn´k dt

“
n!

k!pn´ kq!
“

ˆ

n

k

˙

.

We only need to show that the left hand side satisfies the same boundary conditions and
recurrence relation as

`

n
k

˘

. This can be done using integration by parts. ˝

75Actually we don’t need Laplace’s formula in this case because the integral is easy.
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Now here is a proof of the Bayes-Laplace Theorem.

Proof of Bayes-Laplace. Consider an unknown coin with p “ P pheadsq. We will think of
p as a random variable with uniform prior density:

fpptq “

#

1 0 ď t ď 1,

0 otherwise.

Now suppose that we flip the coin n times and let X be the number of heads. Note that p and
X are not independent. For any specific value of p we observe that X has a binomial pmf:

P pX “ k | p “ tq “

ˆ

n

k

˙

tkp1´ tqn´k.

In order to flip this around we can use Bayes’ Theorem:76

P pp “ t |X “ kq “
P pp “ tq ¨ P pX “ k | p “ tq

P pX “ kq

“
P pp “ tq ¨ P pX “ k | p “ tq

ř

s P pp “ sq ¨ P pX “ k | p “ sq

“
P pp “ tq ¨

`

n
k

˘

tkp1´ tqn´k
ř

s P pp “ sq ¨
`

n
k

˘

skp1´ sqn´k
.

However, the expression P pp “ tq makes no sense because p is a continuous random variable.
Therefore we should replace P pp “ tq and P pp “ t |X “ kq by the density functions fpptq and
fp|X“kptq, and we should replace the sum in the denominator by an integral:

fp|X“kptq “
fpptq ¨

`

n
k

˘

tkp1´ tqn´k
ş

fppsq ¨
`

n
k

˘

skp1´ sqn´k ds
“
fpptq ¨

`

n
k

˘

tkp1´ tqn´k
ş1
0

`

n
k

˘

skp1´ sqn´k ds
.

From our knowledge of the Tricky Integral we obtain

fp|X“kptq “
fpptq ¨

`

n
k

˘

tkp1´ tqn´k
`

n
k

˘

¨
k!pn´kq!
pn`1q!

“ fpptq ¨ pn` 1q

ˆ

n

k

˙

tkp1´ tqn´k,

as desired. Finally, we use the Tricky Integral again to obtain the expected value:

Erp|X “ ks “

ż 8

´8

t ¨ fp|X“kptq dt

“

ż 1

0
t ¨ pn` 1q

ˆ

n

k

˙

tkp1´ tqn´k dt

“ pn` 1q

ˆ

n

k

˙

¨

ż 1

0
tk`1p1´ tqpn`1q´pk`1q dt

76Indeed, this is the original application of Bayes’ Theorem.
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“ pn` 1q

ˆ

n

k

˙

¨
pk ` 1q!pn´ kq!

pn` 2q!
“
k ` 1

n` 2
.

˝

In fact, we can easily generalize this result. The modern version is expressed in terms of beta
distributions, which were originally known as Pearson’s Type I distributions.

The Beta Distribution

Let α and β be any positive integers.77 The beta distribution Bpα, βq is defined by the
following density function:

Bpt;α, βq “

#

pα`β´2q!
pα´1q!pβ´1q! ¨ t

α´1p1´ tqβ´1 0 ď t ď 1,

0 otherwise.

Now consider an unknown coin with p “ P pheadsq and suppose that our prior knowledge
of p is described by a beta distribution, p „ Bpα, βq.78 In order to gain more information
about p we flip the coin n times and let X be the number of heads that show up. If we
obtain X “ k heads then the posterior distribution of p is also a beta:

pp |X “ kq „ Bpα` k, β ` n´ kq.

This has the amusing consequence that we can incorporate the new information all at once,
or one flip at a time. The result will be the same.

I will end this section with two examples of the Bayesian approach to statistics.

Small Example. Suppose that an unknown coin is flipped n “ 20 times and X “ 14 heads
are obtained. Compute the probability that p ă 1{2.

Solution: This problem makes no sense from the classical point of view. From the Bayesian
point of view, suppose that p has the uniform prior distribution p „ Bp1, 1q. Then, according
to the Bayes-Laplace theorem, the posterior distribution is p „ Bp1 ` 14, 1 ` 6q. In other
words:

fp|X“14ptq “

#

813960 ¨ t14p1´ tq6 0 ď t ď 1,

0 otherwise.

Here is a picture of the prior and posterior distributions of p:

77This can be generalized to real values of α and β using the Gamma function, but why bother?
78The case α “ β “ 1 is the “no information” uniform prior.
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Now I can use my laptop to compute the probability:

P pp ă 1{2 |X “ 14q “

ż 1{2

0
813960 ¨ t14p1´ tq6 dt “ 3.92%.

In other words, we can declare with a significance of 3.92% (or a confidence of 96.08%) that the
coin favors heads. Isn’t that easy? No messing around with hypotheses. The only difficulty is
that you need an electronic computer to perform the computation.

A confidence interval for p should be based around the expected value Erps “ k`1
n`2 “

15
22 “ 0.68,

but maybe it shouldn’t be symmetric since the distribution of p is not symmetric. To mimic
the classical version of confidence intervals we will require the tails to have equal probability.
In other words, a 95% confidence interval a ă p ă b should have P pp ă aq “ P pp ą bq “ 2.5%.
I used my computer to find that a “ 0.4782 and b “ 0.8541. Thus we can declare that

P p0.4782 ă p ă 0.8541q “ 95%.

To distinguish from the classical case, we will call this a credible interval for p.

Laplace’s Example. Finally, let me recall Laplace’s Problem from the beginning of Chapter
3. At that point we solved the problem with a classical approach based on the de Moivre-
Laplace Theorem (the CLT). But this is not how Laplace solved the problem. Instead he used
the Bayes-Laplace Theorem. Here’s how he did it.

Between the years 1745 and 1770, records indicate that in the city of Paris there were born
251,527 boys and 241,945 girls. Suppose that each birth is a coin with p “ P pboyq. Should we
take the data as evidence that p ą 1{2? Assuming that p has a uniform prior distribution, we
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know from the Bayes-Laplace Theorem that the posterior distribution is Bp1 ` k, 1 ` n ´ kq
with n “ 493472 and k “ 251527. Laplace used this to compute that

P pp ď 1{2 |X “ 251527q “

ż 1{2

0

p251527q!p241945q!

p493473q!
t493472p1´ tq241945 dt “ 1.1521ˆ 10´42.

From this he declared that it is “morally certain” that p ą 1{2.

I tried to replicate this computation and it melted my laptop. How did Laplace do it by hand?
In fact, he used a normal distribution to approximate the beta distribution! Apparently there
is no getting away from the fact that statistics is hard.
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