
Math 224 Summer 2019
Homework 5 Drew Armstrong

1. Let X1, X2, . . . , X15 be independent and identically distributed (iid) random variables.
Suppose that each Xi has pdf defined by the following function:

f(x) =

{
3
2 · x

2 if −1 ≤ x ≤ 1,

0 otherwise.

(a) Compute E[Xi] and Var(Xi).
(b) Consider the sum ΣX = X1 +X2 + · · ·+X15. Compute E[ΣX] and Var(ΣX).
(c) The Central Limit Theorem says that ΣX is approximately normal. Use this fact to

estimate the probability P (−0.18 ≤ ΣX ≤ 0.36).

(a) Here is a graph of the pdf of each individual Xi:

Since the distribution is symmetric about zero, we conclude without doing any work that
µ = E[Xi] = 0 for each i. To find σ, however, we need to compute an integral. For any i, the
variance of Xi is given by

σ2 = Var(Xi) = E
[
X2
i

]
− E[Xi]
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i ]− 0
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∫ ∞
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2
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5
.

(b) It follows that ΣX has mean and variance given by

E[ΣX] = E[X1] + E[X2] + · · ·+ E[X15] = 0 + 0 + · · ·+ 0 = 0

and

Var(ΣX) = Var(X1) + Var(X2) + · · ·+ Var(X15) =
3

5
+

3

5
+ · · ·+ 3

5
= 15 · 3

5
= 9,



By the Central Limit Theorem, the sum ΣX is approximately normal and hence

ΣX − E[ΣX]√
Var(ΣX)

=
ΣX − 0√

9
=

ΣX

3

is approximately standard normal. We conclude that

P (−0.18 ≤ ΣX ≤ 0.36) = P

(
−0.18

3
≤ ΣX

3
≤ 0.36

3

)
= P

(
−0.06 ≤ ΣX

3
≤ 0.12

)
≈ Φ(0.12)− Φ(−0.06)

= Φ(0.12)− [1− Φ(0.06)]

= Φ(0.12) + Φ(0.06)− 1

= 0.5478 + 0.5239− 1 = 7.17%.

2. Suppose that n = 48 seeds are planted and suppose that each seed has a probability
p = 2/3 of germinating. Let X be the number of seeds that germinate and use the Central
Limit Theorem to estimate the probability P (30 ≤ X ≤ 33) that between 30 and 33 seeds
germinate (inclusive). Don’t forget to use a continuity correction.

We observe that X is a binomial random variable with the following pmf:

P (X = k) =

(
48

k

)
(2/3)k(1/3)48−k.

My laptop tells me that the exact probability is

P (30 ≤ X ≤ 33) =

33∑
k=30

P (X = k) =

33∑
k=30

(
48

k

)
(2/3)k(1/3)48−k = 45.18%.

To compute an approximation by hand we will use the de Moivre-Laplace Theorem, which
says that X is approximately normal with mean np = 32 and variance σ2 = np(1− p) = 32/3,

i.e., standard deviation σ =
√

32/3 = 3.266. Let X ′ be a continuous random variable with
X ′ ∼ N(µ = 32, σ2 = 32/3). Here is a picture comparing the probability mass function of
the discrete variable X to the probability density function of the continuous variable X ′:



The picture suggests that we should use the following continuity correction:1

P (30 ≤ X ≤ 33) ≈ P (29.5 ≤ X ′ ≤ 33.5).

And then because (X ′ − 32)/3.266 is standard normal we obtain

P (29.5 ≤ X ′ ≤ 33.5) = P (−2.5 ≤ X ′ − 32 ≤ 1.5)

= P

(
−0.77 ≤ X ′ − 32

3.266
≤ 0.46

)
= Φ(0.46)− Φ(−0.77)

= Φ(0.46)− [1− Φ(0.77)]

= Φ(0.46) + Φ(0.77)− 1 = 0.6772 + 0.7794− 1 = 45.66%.

Not too bad.

3. Suppose that a coin is flipped 100 times and let X be the number of heads. We will use
p̂ = X/100 as an (unbiased) estimator for the unknown probability of heads: p = P (H).

(a) Assuming that the coin is fair (p = 1/2), compute E[p̂] and Var(p̂).
(b) In order to test the hypothesis H0 = “p = 1/2” against H1 = “p > 1/2” we flip the

coin 100 times and get heads 60 times. Should you reject H0 in favor of H1 at the 5%
level of significance? At the 2.5% level of significance? At the 1% level of significance?
[Hint: p̂ is approximately normal.]

(a) In general we know that E[X] = np and Var(X) = np(1 − p) hence E[p̂] = p and
Var(p̂) = p(1− p)/n. If n = 100 and p = 1/2 then we obtain

E[p̂] =
1

2
and Var(p̂) =

(1/2)(1− 1/2)

100
=

1

400
.

(b) Now consider the null hypothesis:

H0 = “p =
1

2
.”

To test this against the alternative hypothesis

H1 = “p >
1

2
”

we will assume that H0 is true and compute the value of p̂ that would be so far above 1/2 to
give us an α surprise. In other words: We want to find the critical value kα such that

P (p̂ > kα|H0) = α.

1If you don’t do this then you will still get a reasonable answer, it just won’t be as accurate.



So let us assume that H0 is true. Then since n = 100 is large enough (I guess) we can assume

that (p̂− 1/2)/
√

1/400 is approximately standard normal. Thus we obtain

P

(
p̂− 1/2√

1/400
> zα |H0

)
= α,

P

(
p̂− 1

2
> zα ·

√
1

400
|H0

)
= α,

P

(
p̂ >

1

2
+ zα ·

√
1

400
|H0

)
= α.

We conclude that the critical value is

kα =
1

2
+ zα ·

√
1

400
.

and the critical region is

p̂ > kα,

p̂ > 1/2 + zα ·
√

1/400.

If we perform the experiment and get a value of p̂ in this region then we will reject H0 in favor
of H1. [Reason: If H0 is true then this result would only have an α chance of happening. If
α is small then this means that either (1) something extremely rare happened, or (2) H0 is
wrong.]

Suppose we performed the experiment and got p̂ = 0.6. Here are three tests:

• At α = 5% and zα = 1.645 the rejection region is

p̂ > 1/2 + zα ·
√

1/400 = 1/2 + 1.645 ·
√

1/400 = 0.582.

Thus we reject H0 in favor of H1.
• At α = 2.5% and zα = 1.96 the rejection region is

p̂ > 1/2 + zα ·
√

1/400 = 1/2 + 1.96 ·
√

1/400 = 0.598.

Thus we reject H0 in favor of H1.
• At α = 1% and zα = 2.33 the rejection region is

p̂ > 1/2 + zα ·
√

1/400 = 1/2 + 2.33 ·
√

1/400 = 0.617.

Thus we do not reject H0 in favor of H1.

4. Let p be the true proportion of voters in a population who intend to vote for candidate A.
Suppose that we polled 1000 voters and 522 told us that they intend to vote for A. Use this
to compute confidence intervals for p at the 90%, 95% and 99% confidence levels. [Hint: You
may assume that the voters’ responses are iid coin flips.]

Let X be the number of sampled voters who say “yes.” We will assume that this is a binomial
random variable with E[X] = np = 1000p and Var(X) = np(1 − p) = 1000p(1 − p). We
will use the sample proportion p̂ = X/1000 as an estimator for p. Recall that E[p̂] = p and
Var(p̂) = p(1− p)/1000. Then since n = 1000 is rather large we will assume that

p̂− p√
p(1− p)/1000

is approximately standard normal.



Recall that this leads to the following approximate (1− α)100% confidence interval:

p̂− zα/2 ·
√

p̂(1−p̂)
1000 < p < p̂+ zα/2 ·

√
p̂(1−p̂)
1000 ,

0.522− zα/2 ·
√

(0.522)(0.478)
1000 < p < 0.522 + zα/2 ·

√
(0.522)(0.478)

1000 ,

0.522− zα/2 · 0.0158 < p < 0.522 + zα/2 · 0.0158.

Here are three specific levels of confidence:

• If (1− α)100% = 90% then α = 5% and zα/2 = 1.645, hence

0.522− 1.645 · 0.0158 < p < 0.522 + 1.645 · 0.0158,
49.6% < p < 54.8%.

• If (1− α)100% = 95% then α = 2.5% and zα/2 = 1.96, hence

0.522− 1.96 · 0.0158 < p < 0.522 + 1.96 · 0.0158,
49.1% < p < 55.3%.

• If (1− α)100% = 99% then α = 1% and zα/2 = 2.575, hence

0.522− 2.575 · 0.0158 < p < 0.522 + 2.575 · 0.0158,
48.1% < p < 56.3%.

5. Let X1, . . . , X10 be an iid sample from a normal distribution with variance σ2 = 36 and
unknown mean µ. Suppose that the sample mean is measured to be

X =
1

10
(X1 + · · ·+X10) = 50.

Use this to compute confidence intervals for µ at the 90%, 95% and 99% confidence levels.
[Hint: (X − µ)/

√
σ2/n has an exactly standard normal distribution.]

First note that E[X] = µ and Var(X) = σ2/n. Since the sample comes from a normal

distribution this implies that (X − µ)/
√
σ2/n is standard normal. It follows that for all

0 < α < 1 we have

P

(
−zα/2 <

X − µ√
σ2/n

< zα/2

)
= 1− α,

P

(
−zα/2 ·

√
σ2

n
< X − µ < zα/2 ·

√
σ2

n

)
= 1− α,

P

(
−zα/2 ·

√
σ2

n
< µ−X < zα/2 ·

√
σ2

n

)
= 1− α,

P

(
X − zα/2 ·

√
σ2

n
< µ < X + zα/2 ·

√
σ2

n

)
= 1− α.

Thus we obtain the following (1− α)100% confidence interval:

50− zα/2 ·
√

36
10 < µ < 50 + zα/2 ·

√
36
10 ,

50− zα/2 · 1.897 < µ < 50− zα/2 · 1.897.

Here are three specific levels of confidence:



• If (1− α)100% = 90% then α = 10% and zα/2 = 1.645, hence

50− 1.645 · 1.895 < µ < 50 + 1.645 · 1.895,
46.88 < µ < 53.12.

• If (1− α)100% = 95% then α = 5% and zα/2 = 1.96, hence

50− 1.645 · 1.895 < µ < 50 + 1.645 · 1.895,
46.28 < µ < 53.72.

• If (1− α)100% = 99% then α = 1% and zα/2 = 2.575, hence

50− 1.645 · 1.895 < µ < 50 + 1.645 · 1.895,
45.11 < µ < 54.86.

6. In order to estimate the average weight µ of a chocolate bar, a random sample of n = 9
bars from a production line are weighed, yielding the following results in grams:

21.40 18.85 18.55 19.40 19.15 22.45 22.80 22.20 23.15

Use this data to compute a 98% confidence interval for the average weight µ. [Hint: Assume
that the weight of each chocolate bar is normally distributed and let X,S2 be the sample
mean and sample variance. Since n = 9 is a small number you should use the fact that
(X − µ)/

√
S2/n has a t-distribution with 8 degrees of freedom.]

First we compute the sample mean:

X =
X1 + · · ·+X9

9
=

21.40 + · · ·+ 23.15

9
= 20.883.

Then we compute the sample variance:

S2 =
1

8

[
(21.40− 20.883)2 + · · ·+ (23.15− 20.883)2

]
= 3.506.

Since the 9 data points come from a normal distribution with mean µ we may assume that
(X − µ)/

√
S2/9 has a t-distribution with 8 degrees of freedom. Thus we obtain the following

(1− α)100% confidence interval for µ:

X − tα/2(8) ·
√

S2

9 < µ < X + tα/2(8) ·
√

S2

9 ,

20.883− tα/2(8) ·
√

3.506
9 < µ < X + tα/2(8) ·

√
3.506
9 ,

20.883− tα/2(8) · 0.6242 < µ < X + tα/2(8) · 0.6242.

For a (1− α)100% = 98% confidence interval we have α = 2% and tα/2(8) = 2.896, hence

20.883− 2.896 · 0.6242 < µ < 20.883 + 2.896 · 0.6242.
19.08 < µ < 22.69.


