
Math 224 Summer 2019
Homework 1 Drew Armstrong

1. Suppose that a fair coin is flipped 6 times in sequence and let X be the number of “heads”
that show up. Draw Pascal’s triangle down to the sixth row (recall that the zeroth row consists
of a single 1) and use your table to compute the probabilities P (X = k) for k = 0, 1, 2, 3, 4, 5, 6.

Here is Pascal’s Triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Then since 26 = 64 we have the following table of probabilities:

k 0 1 2 3 4 5 6

P (X = k) 1
64

6
64

15
64

20
64

15
64

6
64

1
64

2. Suppose that a fair coin is flipped 4 times in sequence.

(a) List all 16 outcomes in the sample space S.
(b) List the outcomes in each of the following events:

A = {at most 3 heads},
B = {more than 2 heads},
C = {heads on the 3rd flip},
D = {exactly 2 tails}.

(c) Assuming that all outcomes are equally likely, use the formula P (E) = #E/#S to
compute the following probabilities:

P (A ∪B), P (A ∩B), P (C), P (D), P (C ∩D).

(a) The sample space is

S ={HHHH,

HHHT,HHTH,HTHH,THHH,

HHTT,HTHT,HTTH, THHT, THTH, TTHH,

HTTT, THTT, TTHT, TTTH,

TTTT}
1
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(b) The events are

A ={HHHT,HHTH,HTHH,THHH,

HHTT,HTHT,HTTH, THHT, THTH, TTHH,

HTTT, THTT, TTHT, TTTH,

TTTT},
B ={HHHH,

HHHT,HHTH,HTHH,THHH},
C ={HHHH,

HHHT,HTHH, THHH,

HTHT, THHT, TTHH,

TTHT},
D ={HHTT,HTHT,HTTH, THHT, THTH, TTHH}.

(c) First observe that A ∪B = S and hence P (A ∪B) = P (S) = 1. Next observe that

A ∩B = {exactly 3 heads} = {HHHT,HHTH,HTHH,THHH},

so that P (A ∩B) = #(A ∩B)/#S = 4/16. Then since #C = 8 and #D = 6 we have

P (C) =
#C

#S
=

8

16
and P (D) =

#D

#S
=

6

16
.

Finally, observe that C ∩D = {HTHT, THHT, TTHH} so that

P (C ∩D) =
#(C ∩D)

#S
=

3

16
.

3. Draw Venn diagrams to verify de Morgan’s laws: For all events E,F ⊆ S we have

(a) (E ∪ F )′ = E′ ∩ F ′,
(b) (E ∩ F )′ = E′ ∪ F ′.

The proof follows from the following diagrams:
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4. Suppose that a fair coin is flipped until heads appears. The sample space is

S = {H,TH, TTH, TTTH, TTTTH, . . .}.
However these outcomes are not equally likely.

(a) Let Ek be the event {first H occurs on the kth flip}. Explain why P (Ek) = 1/2k.
[Hint: The event Ek consists of exactly one outcome. What is the probability of this
outcome? You may assume that the coin flips are independent.]

(b) Recall the geometric series from Calculus:

1 + q + q2 + · · · = 1

1− q
for all numbers |q| < 1.

Use this fact to verify that the sum of all the probabilities equals 1:
∞∑
k=1

P (Ek) = 1.

(a) There is exactly one outcome in this event:

Ek = {TTT · · ·T︸ ︷︷ ︸
k − 1 times

H}.

Since the coin flips are fair and independent we have

P (Ek) = P (TTT · · ·T︸ ︷︷ ︸
k − 1 times

H)

= P (T )P (T )P (T ) · · ·P (T )︸ ︷︷ ︸
k − 1 times

P (H)

=

(
1

2

)(
1

2

)(
1

2

)
· · ·
(

1

2

)
︸ ︷︷ ︸

k − 1 times

(
1

2

)
=

(
1

2

)k

=
1

2k
.
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(b) By substituting q = 1/2 into the geometric series we obtain

1 +
1

2
+

1

4
+

1

8
+ · · · = 1

1− 1/2

1 +
1

2
+

1

4
+

1

8
+ · · · = 2

1

2
+

1

4
+

1

8
+ · · · = 2− 1

1

2
+

1

4
+

1

8
+ · · · = 1

and hence
∞∑
k=0

P (Ek) =

∞∑
k=0

1

2k
=

1

2
+

1

4
+

1

8
+ · · · = 1.

5. Suppose that P (A) = 0.3, P (B) = 0.6 and P (A ∩ B) = 0.2. Use this information to
compute the following probabilities. A Venn diagram may be helpful.

(a) P (A ∪B),
(b) P (A ∩B′),
(c) P (A′ ∪B′).

(a) Using Inclusion-Exclusion for two events gives

P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.3 + 0.6− 0.2 = 0.7.

(b) Using the Law of Total Probability gives

P (A) = P (A ∩B) + P (A ∩B′)

0.3 = 0.2 + P (A ∩B′)

0.1 = P (A ∩B′).

(c) Using de Morgan’s Law and Complementary Events gives

P (A′ ∪B′) = P ((A ∩B)′) = 1− P (A ∩B) = 1− 0.2 = 0.8.

6. Let X be a real number that is selected randomly from [0, 1], i.e., the closed interval from
zero to one. Use your intuition to assign values to the following probabilities:

(a) P (X = 1/2),
(b) P (0 ≤ X ≤ 1/3),
(c) P (0 < X < 1/3),
(d) P (1/2 < X ≤ 3/4),
(e) P (1/2 < X < 4/3).

(a) If all of the points in [0, 1] are “equally likely,” then since there are infinitely many points
we must have

P (X = 1/3) =
1

∞
= 0.

Maybe you’re uncomfortable with this, but it’s the least wrong answer I can think of. My
intuition is that we roll a ball on a billiard table. After the ball comes to rest we measure the
distance from the center of the ball to a fixed side of the table. In the real world there is no
way that the ball will stop exactly one third of the way across the table. Any measurement
can only be approximate.
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(c) It seems reasonable that there is a 1/3 chance of landing in the left third of the interval:

P (0 < X < 1/3) = 1/3.

(b) If you agreed in part (a) that P (X = 1/3) = P (X = 0) = 0 then we must have

P (0 ≤ X ≤ 1/3) =���
��P (X = 0) + P (0 < X < 1/3) +((((

(((P (X = 1/3)

= 0 + P (0 < X < 1/3) + 0

= P (0 < X < 1/3) = 1/3.

(c) In general, the probability of landing in an interval should be the length of the interval.
And we can just ignore the endpoints.

P (1/2 < X ≤ 3/4) =
3

4
− 1

2
=

1

4
.

(d) It is impossible to get 1 < X < 4/3, so we must have

P (1/2 < X < 4/3) = P (1/2 < X ≤ 1) +((((
((((

(
P (1 < X < 4/3)

= 1/2 + 0

= 1/2.

7. Consider a strange coin with P (H) = p and P (T ) = q = 1 − p. Suppose that you flip
the coin n times and let X be the number of heads that you get. Find a formula for the
probability P (X ≥ 1). [Hint: Observe that P (X ≥ 1) + P (X = 0) = 1. Maybe it’s easier to
find a formula for P (X = 0).]

There is only one way to get X = 0:

“X = 0” = {TTT · · ·T︸ ︷︷ ︸
n times

}.

Then by independence we must have

P (X = 0) = P (TTT · · ·T︸ ︷︷ ︸
n times

)

= P (T )P (T )P (T ) · · ·P (T )︸ ︷︷ ︸
n times

= qqq · · · q︸ ︷︷ ︸
n times

= qn

and hence P (X ≥ 1) = 1− P (X = 0) = 1− qn.

8. Suppose that you roll a pair of fair six-sided dice.

(a) Write down all elements of the sample space S. What is #S? Are the outcomes
equally likely? [Hopefully, yes.]

(b) Compute the probability of getting a “double six.” [Hint: Let E ⊆ S be the subset of
outcomes that correspond to getting a “double six.” Assuming that the outcomes of
your sample space are equally likely, you can use the formula P (E) = #E/#S.]
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(a) Let’s suppose that one die is “blue” and the other is “red,” so we can tell them apart. In
other words, the outcome “12”=“the blue die shows 1 and the red die shows 2” will differ from
the outcome “21”=“the blue die shows 2 and the red die shows 1.” The the sample space is:

S ={11, 12, 13, 14, 15, 16

21, 22, 23, 24, 25, 26

31, 32, 33, 34, 35, 36

41, 42, 43, 44, 45, 46

61, 62, 63, 64, 65, 66}.
Independence and fairness suggest that for any outcome ij ∈ S we must have P (ij) =
P (i)P (j) = (1/6)(1/6) = 1/36. In other words, the 36 outcomes are equally likely.1

(b) Let E =“double six,” so that E = {66}. Then we have

P (E) =
#E

#S
=

1

36
.

9. Analyze the Chevalier de Méré’s two experiments:

(a) Roll a fair six-sided die 4 times and let X be the number of “sixes” that you get.
Compute P (X ≥ 1). [Hint: You can think of a die roll as a “strange coin flip,” where
H =“six” and T =“not six.” Use Problem 7.]

(b) Roll a pair of fair six-sided dice 24 times and let Y be the number of “double sixes”
that you get. Compute P (Y ≥ 1). [Hint: You can think of rolling two dice as a “very
strange coin flip,” where H =“double six” and T =“not double six.” Use Problems 7
and 8.]

(a) Roll a fair six-sided die and let H =“we get six,” so that P (H) = p = 1/6 and P (T ) =
q = 5/6. Then according to Problem 7 we have

P (X ≥ 1) = 1− q4 = 1−
(

5

6

)4

= 51.77%.

(b) Roll a pair of fair six-sided dice and let H =“we get double six.” Then from Problem 8
we know that P (H) = p = 1/36 and P (T ) = q = 35/36 and from Problem 7 we find

P (Y ≥ 1) = 1− q24 = 1−
(

35

36

)24

= 49.14%.

[Remark: This agrees with the Chevalier’s experimental evidence that P (X ≥ 1) is slightly
greater than 50% and P (Y ≥ 1) is slightly less than 50%.]

1It’s perfectly okay to consider the two dice as “unordered” or “uncolored.” Then we will have #S = 21.
However, in this case the outcomes will not be equally likely, which makes the analysis much harder.


