1. Suppose that a fair coin is flipped 6 times in sequence and let X be the number of "heads" that show up. Draw Pascal's triangle down to the sixth row (recall that the zeroth row consists of a single 1) and use your table to compute the probabilities $P(X=k)$ for $k=0,1,2,3,4,5,6$.
2. Suppose that a fair coin is flipped 4 times in sequence.
(a) List all 16 outcomes in the sample space S.
(b) List the outcomes in each of the following events:
$A=\{$ at most 3 heads $\}$,
$B=\{$ more than 2 heads $\}$,
$C=\{$ heads on the 3rd flip $\}$,
$D=\{$ exactly 2 heads $\}$.
(c) Assuming that all outcomes are equally likely, use the formula $P(E)=\# E / \# S$ to compute the following probabilities:

$$
P(A \cup B), \quad P(A \cap B), \quad P(C), \quad P(D), \quad P(C \cap D) .
$$

3. Draw Venn diagrams to verify de Morgan's laws: For all events $E, F \subseteq S$ we have
(a) $(E \cup F)^{\prime}=E^{\prime} \cap F^{\prime}$,
(b) $(E \cap F)^{\prime}=E^{\prime} \cup F^{\prime}$.
4. Suppose that a fair coin is flipped until heads appears. The sample space is

$$
S=\{H, T H, T T H, T T T H, T T T T H, \ldots\} .
$$

However these outcomes are not equally likely.
(a) Let E_{k} be the event \{first H occurs on the k th flip\}. Explain why $P\left(E_{k}\right)=1 / 2^{k}$. [Hint: The event E_{k} consists of exactly one outcome. What is the probability of this outcome? You may assume that the coin flips are independent.]
(b) Recall the geometric series from Calculus:

$$
1+q+q^{2}+\cdots=\frac{1}{1-q} \quad \text { for all numbers }|q|<1
$$

Use this fact to verify that the sum of all the probabilities equals 1 :

$$
\sum_{k=1}^{\infty} P\left(E_{k}\right)=1 .
$$

5. Suppose that $P(A)=0.3, P(B)=0.6$ and $P(A \cap B)=0.2$. Use this information to compute the following probabilities. A Venn diagram may be helpful.
(a) $P(A \cup B)$,
(b) $P\left(A \cap B^{\prime}\right)$,
(c) $P\left(A^{\prime} \cup B^{\prime}\right)$.
6. Let X be a real number that is selected randomly from $[0,1]$, i.e., the closed interval from zero to one. Use your intuition to assign values to the following probabilities:
(a) $P(X=1 / 3)$,
(b) $P(0 \leq X \leq 1 / 3)$,
(c) $P(0<X<1 / 3)$,
(d) $P(1 / 2<X \leq 3 / 4)$,
(e) $P(1 / 2<X<4 / 3)$.
7. Consider a strange coin with $P(H)=p$ and $P(T)=q=1-p$. Suppose that you flip the coin n times and let X be the number of heads that you get. Find a formula for the probability $P(X \geq 1)$. [Hint: Observe that $P(X \geq 1)+P(X=0)=1$. Maybe it's easier to find a formula for $P(X=0)$.]
8. Suppose that you roll a pair of fair six-sided dice.
(a) Write down all elements of the sample space S. What is $\# S$? Are the outcomes equally likely? [Hopefully, yes.]
(b) Compute the probability of getting a "double six." [Hint: Let $E \subseteq S$ be the subset of outcomes that correspond to getting a "double six." Assuming that the outcomes of your sample space are equally likely, you can use the formula $P(E)=\# E / \# S$.]
9. Analyze the Chevalier de Méré's two experiments:
(a) Roll a fair six-sided die 4 times and let X be the number of "sixes" that you get. Compute $P(X \geq 1)$. [Hint: You can think of a die roll as a "strange coin flip," where $H=$ "six" and $T=$ "not six." Use Problem 7.]
(b) Roll a pair of fair six-sided dice 24 times and let Y be the number of "double sixes" that you get. Compute $P(Y \geq 1)$. [Hint: You can think of rolling two dice as a "very strange coin flip," where $H=$ "double six" and $T=$ "not double six." Use Problems 7 and 8.]
