Key Topics from Chapter 1

- Suppose an experiment has a finite set S of equally likely outcomes. Then the probability of any event $E \subseteq S$ is

$$
P(E)=\frac{\# E}{\# S}
$$

- For example, if we flip a fair coin n times then the $\# S=2^{n}$ outcomes are equally likely. The number of sequences with $k H$'s and $n-k T$ is $\binom{n}{k}$, thus we have

$$
P(k \text { heads })=\frac{\#(\text { ways to get } k \text { heads })}{\# S}=\frac{\binom{n}{k}}{2^{n}} .
$$

- If we flip a strange coin with $P(H)=p$ and $P(T)=q$ then the $\# S=2^{n}$ outcomes are not equally likey. In this case we have the more general formula

$$
P(k \text { heads })=\binom{n}{k} P(H)^{k} P(T)^{n-k}=\binom{n}{k} p^{k} q^{n-k} .
$$

This agrees with the previous formula when $p=q=1 / 2$.

- These binomial probabilities add to 1 because of the binomial theorem:

$$
\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k}=(p+q)^{n}=1^{n}=1
$$

- In general, a probability measure P on a sample space S must satisfy three rules:

1. For all $E \subseteq S$ we have $P(E) \geqslant 0$.
2. For all $E_{1}, E_{2} \subseteq S$ with $E_{1} \cap E_{2}=\varnothing$ we have

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)
$$

3. We have $P(S)=1$.

- Many other properties follow from these rules, such as the principle of inclusion-exclusion, which says that for general events $E_{1}, E_{2} \subseteq S$ we have

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right) .
$$

- Also, if E^{\prime} is the complement of an event $E \subseteq S$ then we have $P\left(E^{\prime}\right)=1-P(E)$.
- Venn diagrams are useful for verifying identities such as de Morgan's laws:

$$
\begin{aligned}
& \left(E_{1} \cap E_{2}\right)^{\prime}=E_{1}^{\prime} \cup E_{2}^{\prime}, \\
& \left(E_{1} \cup E_{2}\right)^{\prime}=E_{1}^{\prime} \cap E_{2}^{\prime} .
\end{aligned}
$$

- Given events $E_{1}, E_{2} \subseteq S$ we define the conditional probability:

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{2}\right)} .
$$

- Bayes' Theorem relates the conditional probabilites $P\left(E_{1} \mid E_{2}\right)$ and $P\left(E_{2} \mid E_{1}\right)$:

$$
P\left(E_{1}\right) \cdot P\left(E_{2} \mid E_{1}\right)=P\left(E_{2}\right) \cdot P\left(E_{1} \mid E_{2}\right) .
$$

- The events E_{1}, E_{2} are called independent if any of the following formulas hold:

$$
P\left(E_{1} \mid E_{2}\right)=P\left(E_{1}\right) \quad \text { or } \quad P\left(E_{2} \mid E_{1}\right)=P\left(E_{2}\right) \quad \text { or } \quad P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right) .
$$

- Suppose our sample space is partitioned as $S=E_{1} \cup E_{2} \cup \cdots \cup E_{m}$ with $E_{i} \cap E_{j}=\varnothing$ for all $i \neq j$. For any event $F \subseteq S$ the law of total probability says

$$
\begin{aligned}
& P(F)=P\left(E_{1} \cap F\right)+P\left(E_{2} \cap F\right)+\cdots+P\left(E_{m} \mid F\right) \\
& P(F)=P\left(E_{1}\right) \cdot P\left(F \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(F \mid E_{2}\right)+\cdots+P\left(E_{m}\right) \cdot P\left(F \mid E_{m}\right)
\end{aligned}
$$

- Then the general version of Bayes' Theorem says that

$$
P\left(E_{k} \mid F\right)=\frac{P\left(E_{k} \cap F\right)}{P(F)}=\frac{P\left(E_{k}\right) \cdot P\left(F \mid E_{k}\right)}{\sum_{i=1}^{m} P\left(E_{i}\right) \cdot P\left(F \mid E_{i}\right)} .
$$

- The binomial coefficients have four different interpretations:

$$
\begin{aligned}
\binom{n}{k} & =\text { entry in the } n \text {th row and } k \text { th diagonal of Pascal's Triangle, } \\
& =\text { coefficient of } x^{k} y^{n-k} \text { in the expansion of }(x+y)^{n}, \\
& =\#(\text { words made from } k \text { copies of one letter and } n-k \text { copies of another letter) } \\
& =\# \text { (ways to choose } k \text { unordered things without replacement from } n \text { things). }
\end{aligned}
$$

- And they have a nice formula:

$$
\binom{n}{k}=\frac{n!}{k!\times(n-k)!}=\frac{n \times(n-1) \times \cdots \times(n-k+1)}{k \times(k-1) \times \cdots \times 1} .
$$

- Ordered things are easier. Consider words of length k from an alphabet of size n :

$$
\begin{aligned}
\#(\text { words }) & =n \times n \times \cdots \times n=n^{k}, \\
\#(\text { words without repeated letters }) & =n \times(n-1) \times \cdots \times(n-k+1)=\frac{n!}{(n-k)!} .
\end{aligned}
$$

- More generally, the number of words containing k_{1} copies of the letter " a_{1}," k_{2} copies of the letter " a_{2}, " \ldots and k_{s} copies of the letter " a_{s} " is

$$
\binom{k_{1}+k_{2}+\cdots+k_{s}}{k_{1}, k_{2}, \ldots, k_{s}}=\frac{\left(k_{1}+k_{2}+\cdots+k_{s}\right)!}{k_{1}!\times k_{2}!\times \cdots \times k_{s}!}
$$

- These numbers are called multinomial coefficients because of the multinomial theorem:

$$
\left(p_{1}+p_{2}+\cdots+p_{s}\right)^{n}=\sum\binom{n}{k_{1}, k_{2}, \ldots, k_{s}} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{s}^{k_{s}}
$$

where the sum is over all possible choices of $k_{1}, k_{2}, \ldots, k_{s}$ such that $k_{1}+k_{2}+\cdots+k_{s}=n$. Suppose that we have an s-sided die and p_{i} is the probability that side i shows up. If the die is rolled n times then the probability that side i shows up exactly k_{i} times is the multinomial probability:

$$
P\left(\text { side } i \text { shows up } k_{i} \text { times }\right)=\binom{n}{k_{1}, k_{2}, \ldots, k_{s}} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{s}^{k_{s}} .
$$

- Finally, suppose that an urn contains r red and g green balls. If n balls are drawn without replacement then

$$
P(k \text { red })=\frac{\binom{r}{k}\binom{g}{n-k}}{\binom{r+g}{n}} .
$$

More generally, if the urn contains r_{i} balls of color i for $i=1,2, \ldots, s$ then the probability of getting exactly k_{i} balls of color i is

$$
P\left(k_{i} \text { balls of color } i\right)=\frac{\binom{r_{1}}{k_{1}}\binom{r_{2}}{k_{2}} \cdots\binom{r_{s}}{k_{s}}}{\binom{r_{1}+r_{2}+\cdots+r_{s}}{k_{1}+k_{2}+\cdots+k_{s}}} \text {. }
$$

These formulas go by a silly name: hypergeometric probability.

Key Topics from Chapter 2

- Let S be the sample space of an experiment. A random variable is any function X : $S \rightarrow \mathbb{R}$ that assigns to each outcome $s \in S$ a real number $X(s) \in \mathbb{R}$. The support of X is the set of possible values $S_{X} \subseteq \mathbb{R}$ that X can take. We say that X is a discrete random variable is the set S_{X} doesn't contain any continuous intervals.
- The probability mass function (pmf) of a discrete random variable $X: S \rightarrow \mathbb{R}$ is the function $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f_{X}(k)= \begin{cases}P(X=k) & \text { if } k \in S_{X} \\ 0 & \text { if } k \notin S_{X}\end{cases}
$$

- We can display a probability mass function using either a table, a line graph, or a probability histogram. For example, suppose that a random variable X has $p m f f_{X}$ defined by the following table:

k	-1	1	2
$f_{X}(k)$	$\frac{2}{6}$	$\frac{3}{6}$	$\frac{1}{6}$

Here is the line graph and the histogram:

- The expected value of a random variable $X: S \rightarrow \mathbb{R}$ with support $S_{X} \subseteq \mathbb{R}$ is defined by either of the following formulas:

$$
E[X]=\sum_{k \in S_{X}} k \cdot P(X=k)=\sum_{s \in S} X(s) \cdot P(s) .
$$

On the one hand, we interpret this as the center of mass of the pmf. On the other hand, we interpret this as the long run average value of X if the experiment is performed many times.

- Consider any random variables $X, Y: S \rightarrow \mathbb{R}$ and constants $\alpha, \beta \in \mathbb{R}$. The expected value satisfies the following algebraic identities:

$$
\begin{aligned}
E[\alpha] & =\alpha, \\
E[\alpha X] & =\alpha E[X], \\
E[X+\alpha] & =E[X]+\alpha, \\
E[X+Y] & =E[X]+E[Y], \\
E[\alpha X+\beta Y] & =\alpha E[X]+\beta E[Y] .
\end{aligned}
$$

In summary, the expected value is a linear function.

- Let $X: S \rightarrow \mathbb{R}$ be a random variable with mean $\mu=E[X]$. We define the variance as the expected value of the squared distance between X and μ :

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right] .
$$

Using the properties above we also have

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-\mu^{2}=E\left[X^{2}\right]-E[X]^{2} .
$$

Since we feel bad about squaring the distance, we define the standard deviation by taking the square root of the variance:

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

- For random variables $X, Y: S \rightarrow \mathbb{R}$ with $E[X]=\mu_{X}$ and $E[Y]=\mu_{Y}$, we define the covariance as follows:

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] .
$$

Using the above properties we also have

$$
\operatorname{Cov}(X, Y)=E[X Y]-E[X] \cdot E[Y] .
$$

Observe that $\operatorname{Cov}(X, X)=E\left[X^{2}\right]-E[X]^{2}=\operatorname{Var}(X)$.

- For any $X, Y, Z: S \rightarrow \mathbb{R}$ and $\alpha, \beta \in \mathbb{R}$ we have

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\operatorname{Cov}(Y, X), \\
\operatorname{Cov}(\alpha X+\beta Y, Z) & =\alpha \operatorname{Cov}(X, Z)+\beta \operatorname{Cov}(Y, Z) .
\end{aligned}
$$

We say that covariance is a symmetric and bilinear function.

- Variance by itself satisfies the following algebraic identities:

$$
\begin{aligned}
\operatorname{Var}(\alpha) & =0 \\
\operatorname{Var}(\alpha X) & =\alpha^{2} \operatorname{Var}(X) \\
\operatorname{Var}(X+\alpha) & =\operatorname{Var}(X) \\
\operatorname{Var}(X+Y) & =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y) .
\end{aligned}
$$

- For discrete random variables $X, Y: S \rightarrow \mathbb{R}$ we define their joint pmf $f_{X Y}$ as follows:

$$
f_{X Y}(k, \ell)=P(X=k \text { and } Y=\ell) .
$$

We say that X and Y are independent if for all k and ℓ we have

$$
f_{X Y}(k, \ell)=f_{X}(k) \cdot f_{Y}(\ell)=P(X=k) \cdot P(Y=\ell) .
$$

If X and Y are independent then we must have $E[X Y]=E[X] \cdot E[Y]$, which implies that $\operatorname{Cov}(X, Y)=0$ and $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$. The converse statements are not true in general.

- Let $\operatorname{Var}(X)=\sigma_{X}^{2}$ and $\operatorname{Var}(Y)=\sigma_{Y}^{2}$. If both of these are non-zero then we define the coefficient of coerrelation:

$$
\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \cdot \sigma_{Y}} .
$$

We always have $-1 \leqslant \rho_{X Y} \leqslant 1$.

- Let $p+q=1$ with $p \geqslant 0$ and $q \geqslant 0$. A Bernoulli random variable has the following pmf:

k	0	1
$P(X=k)$	q	p

We compute

$$
\begin{aligned}
E[X] & =0 \cdot q+1 \cdot p=p, \\
E\left[X^{2}\right] & =0^{2} \cdot q+1^{2} \cdot p=p, \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2}=p-p^{2}=p(1-p)=p q .
\end{aligned}
$$

- A sum of independent Bernoulli random variables is called a binomial random variable. For example, suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are independent Bernoullis with $P\left(X_{i}=1\right)=$ p. Let $X=X_{1}+X_{2}+\cdots+X_{n}$. Then from linearity of expectation we have

$$
E[X]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right]=p+p+\cdots+p=n p
$$

and from independence we have

$$
\operatorname{Var}(X)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=p q+p q+\cdots+p q=n p q .
$$

If we think of each X_{i} as the number of heads from a coin flip then X is the total number of heads in n flips of a coin. Thus X has a binomial pmf:

$$
P(X=k)=\binom{n}{k} p^{k} q^{n-k}
$$

- Suppose an urn contains r red balls and g green balls. Grab n balls without replacement and let X be the number of red balls you get. We say that X has a hypergeometric pmf:

$$
P(X=k)=\frac{\binom{r}{k}\binom{g}{n-k}}{\binom{r g}{n}} .
$$

Let $X_{i}=1$ if the i th ball is red and $X_{i}=0$ if the i th ball is green. Then X_{i} is a Bernoulli random variable with $P\left(X_{i}=1\right)=r /(r+g)$, hence $E\left[X_{i}\right]=r /(r+g)$, and from linearity of expectation we have

$$
E[X]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right]=\frac{r}{r+g}+\frac{r}{r+g}+\cdots+\frac{r}{r+g}=\frac{n r}{r+g} .
$$

Since the X_{i} are not independent, we can't use this method to compute the variance ${ }^{\square}$

[^0]- Consider a coin with $P(H)=p$ and let X be the number of coin flips until you see H. We say that X is a geometric random variable with pmf

$$
P(X=k)=P(T)^{k-1} \cdot P(H)=q^{k-1} p
$$

By manipulating the geometric serie 2^{2} we can show that

$$
P(X>k)=q^{k} \quad \text { and } \quad P(k \leqslant X \leqslant \ell)=q^{k-1}-q^{\ell} .
$$

By manipulating the geometric series a bit more we can show that

$$
E[X]=\frac{1}{p}
$$

In other words, we expect to see the first H on the $(1 / p)$-th flip of the coin 3^{3}

Key Topics from Chapter 3

- Instead of a pmf $f_{X}(k)=P(X=k)$, a continuous random variable X is defined by a probability density function (pdf) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$. Here is a picture:

Discrete pmF

Continuous pdf

By definition the pdf must satisfy

$$
f_{X}(x) \geqslant 0 \text { for all } x \in \mathbb{R} \quad \text { and } \quad \int_{-\infty}^{\infty} f_{X}(x) d x=1
$$

Then for any real numbers $a \leqslant b$ we define

$$
P(a<X<b)=\int_{a}^{b} f_{X}(x) d x
$$

Note that this implies $P(X=k)=P(k \leqslant X \leqslant k)=0$ for any $k \in \mathbb{R}$.

[^1]- Let $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$ be the pdf of a continuous random variable X. Then we define the expected value by the formula

$$
E[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) d x
$$

Just as in the discrete case, this integral represents the center of mass of the distribution. More generally, we define the r th moment of X by the formula

$$
E\left[X^{r}\right]=\int_{-\infty}^{\infty} x^{r} \cdot f_{X}(x) d x
$$

As with the discrete case, the variance is defined as the average squared distance between X and its mean $\mu=E[X]$. That is, we have

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-\mu)^{2}\right] \\
& =\int_{-\infty}^{\infty}(x-\mu)^{2} \cdot f_{X}(x) d x \\
& =\int_{-\infty}^{\infty}\left(x^{2}-2 \mu x+x^{2}\right) \cdot f_{X}(x) d x \\
& =\left(\int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) d x\right)-2 \mu\left(\int_{-\infty}^{\infty} x \cdot f_{X}(x) d x\right)+\mu^{2}\left(\int_{-\infty}^{\infty} f_{X}(x) d x\right) \\
& =E\left[X^{2}\right]-2 \mu \cdot E[X]+\mu^{2} \cdot 1 \\
& =E\left[X^{2}\right]-2 \mu^{2}+\mu^{2} \\
& =E\left[X^{2}\right]-\mu^{2} \\
& =E\left[X^{2}\right]-E[X]^{2} .
\end{aligned}
$$

- The uniform distribution on a real interval $[a, b] \subseteq \mathbb{R}$ has the following pdf:

You should practice the definitions by proving that

$$
E[X]=\frac{a+b}{2} \quad \text { and } \quad \operatorname{Var}(X)=\frac{(b-a)^{2}}{12} .
$$

- Let X be a discrete random variable with pmf $P(X=k)$ and let Y be a continuous random variable with pdf f_{Y}. Suppose that for all integers k we have

$$
P(X=k) \approx f_{Y}(k)
$$

Then for any integers $a \leqslant b$ we can approximate the probability $P(a \leqslant X \leqslant b)$ by the area under the graph of f_{Y}, as follows:

$$
\begin{aligned}
& P(a \leqslant X \leqslant b) \approx \int_{a-1 / 2}^{b+1 / 2} f_{Y}(t) d t, \\
& P(a<X \leqslant b) \approx \int_{a+1 / 2}^{b+1 / 2} f_{Y}(t) d t, \\
& P(a \leqslant X<b) \approx \int_{a-1 / 2}^{b-1 / 2} f_{Y}(t) d t \\
& P(a<X<b)
\end{aligned} \int_{a+1 / 2}^{b-1 / 2} f_{Y}(t) d t . ~ \$
$$

Here's a picture illustrating the second formula:

- Let X be a (discrete) binomial random variable with parameters n and p. If $n p$ and $n(1-p)$ are both large then de Moivre (1730) and Laplace (1810) showed that

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \approx \frac{1}{\sqrt{2 \pi n p(1-p)}} e^{-(k-n p)^{2} / 2 n p(1-p)}
$$

For example, let X be the number of heads in 3600 flips of a fair coin. Then we have

$$
P(1770 \leqslant X \leqslant 1830) \approx \int_{1770-0.5}^{1830+0.5} \frac{1}{\sqrt{1800 \pi}} e^{-(x-1800)^{2} / 1800} d x \approx 69.07 \% .
$$

- In general, the normal distribution with mean μ and σ^{2} is defined by the following pdf:

$$
n\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} .
$$

We will write $X \sim N\left(\mu, \sigma^{2}\right)$ for any random variable with this pdf.

- The stability theorem says that if X and Y are normal and if α, β, γ are constant then

$$
\alpha X+\beta Y+\gamma \text { is also normal. }
$$

- A special case of the above fact says that normal random variables can be standardized:

$$
X \sim N\left(\mu, \sigma^{2}\right) \quad \Longleftrightarrow \quad Z=\frac{X-\mu}{\sigma} \sim N(0,1)
$$

If Z is standard normal then it has the following cumulative density function (cdf):

$$
\Phi(z)=P(Z \leqslant z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x .
$$

The values of $\Phi(z)$ can be looked up in a table. Furthermore, for any probability $0<\alpha<1$ we define the critical value z_{α} to be the unique number with the property

$$
\int_{z_{\alpha}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x=P\left(Z \geqslant z_{\alpha}\right)=\alpha .
$$

These numbers can also be looked up in a table. Here are some pictures:

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be an iid sample with $\mu=E\left[X_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$. If $\bar{X}=$ $\left(X_{1}+\cdots+X_{n}\right) / n$ is the sample mean then we have

$$
E[\bar{X}]=\mu \quad \text { and } \quad \operatorname{Var}(\bar{X})=\sigma^{2} / n
$$

The fact that $\operatorname{Var}(\bar{X}) \rightarrow 0$ as $n \rightarrow \infty$ is called the Law of Large Numbers (LLN). If n is large then the Central Limit Theorem (CLT) says that \bar{X} is approximately normal:

$$
\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n} \approx N\left(\mu, \sigma^{2} / n\right) .
$$

This is the most important theorem in all of (classical) statistics.

- Application: Estimating a proportion. Let p be proportion of yes voters in a population. To estimate p we take a random sample of n voters and let Y be the number who say yes. Then the sample proportion $\hat{p}=Y / n$ is an unbiased estimator for p because $E[\hat{p}]=p$. Furthermore, since $\operatorname{Var}(\hat{p})=p(1-p) / n$ we know that $(\hat{p}-p) / \sqrt{p(1-p) / n}$ is approximately $N(0,1)$.

Thus we obtain the following approximate $(1-\alpha) 100 \%$ intervals for the unknown p :

$$
\begin{aligned}
p & <\hat{p}+z_{\alpha} \cdot \sqrt{\hat{p}(1-\hat{p}) / n}, \\
p & >\hat{p}-z_{\alpha} \cdot \sqrt{\hat{p}(1-\hat{p}) / n}, \\
|p-\hat{p}| & <z_{\alpha / 2} \cdot \sqrt{\hat{p}(1-\hat{p}) / n} .
\end{aligned}
$$

If we want to test the hypothesis $H_{0}=$ " $p=p_{0}$ " at the α level of significance then we use the following rejection regions:

$$
\begin{aligned}
\hat{p}>p_{0}+z_{\alpha} \cdot \sqrt{p_{0}\left(1-p_{0}\right) / n} & \text { if } H_{1}=" p>p_{0}, " \\
\hat{p}<p_{0}-z_{\alpha} \cdot \sqrt{p_{0}\left(1-p_{0}\right) / n} & \text { if } H_{1}=" p<p_{0}, " \\
\left|\hat{p}-p_{0}\right|>z_{\alpha / 2} \cdot \sqrt{p_{0}\left(1-p_{0}\right) / n} & \text { if } H_{1}=" p \neq p_{0} . "
\end{aligned}
$$

- Application: Estimating a mean. Let $X_{1}, X_{2}, \ldots, X_{n}$ be an iid sample from a normal distribution with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$. The sample mean \bar{X} is an unbiased estimator for μ because $E[\bar{X}]=\mu$. Furthermore, since $\operatorname{Var}(\bar{X})=\sigma^{2} / n$ we know from the stability theorem that \bar{X} is exactly $N\left(\mu, \sigma^{2} / n\right)$.

If σ^{2} is known then we obtain the following exact $(1-\alpha) 100 \%$ intervals for μ :

$$
\begin{aligned}
\mu & <\bar{X}+z_{\alpha} \cdot \sqrt{\sigma^{2} / n}, \\
\mu & >\bar{X}-z_{\alpha} \cdot \sqrt{\sigma^{2} / n}, \\
|\mu-\bar{X}| & <z_{\alpha / 2} \cdot \sqrt{\sigma^{2} / n} .
\end{aligned}
$$

If we want to test the hypothesis $H_{0}=" \mu=\mu_{0}$ " at the α level of significance then we use the following rejection regions:

$$
\begin{aligned}
\bar{X}>\mu_{0}+z_{\alpha} \cdot \sqrt{\sigma^{2} / n} & \text { if } H_{1}=" \mu>\mu_{0}, " \\
\bar{X}<\mu_{0}-z_{\alpha} \cdot \sqrt{\sigma^{2} / n} & \text { if } H_{1}=" \mu<\mu_{0}, " \\
\left|\bar{X}-\mu_{0}\right|>z_{\alpha / 2} \cdot \sqrt{\sigma^{2} / n} & \text { if } H_{1}=" \mu \neq \mu_{0} . "
\end{aligned}
$$

If σ^{2} is unknown then we replace it with the sample variance

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

If n is small then we also replace z_{α} with $t_{\alpha}(n-1)$. This is because the random variable $(\bar{X}-\mu) / \sqrt{S^{2} / n}$ has a t-distribution with $n-1$ degrees of freedom.

- Chi-squared distributions are not on the exam.

[^0]: ${ }^{1}$ The variance is $\frac{n r g(r+g-n)}{(r+g)^{2}(r+g-1)}$ but you don't need to know this.

[^1]: ${ }^{2}$ If $|q|<1$ then $1+q+q^{2}+\cdots=1 /(1-q)$.
 ${ }^{3}$ The variance is q / p^{2} but you don't need to know this.

