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Key Topics from Chapter 1

• Suppose an experiment has a finite set S of equally likely outcomes. Then the probability
of any event E Ď S is

P pEq “
#E

#S
.

• For example, if we flip a fair coin n times then the #S “ 2n outcomes are equally likely.
The number of sequences with k H’s and n´ k T is

`

n
k

˘

, thus we have

P pk headsq “
#(ways to get k heads)

#S
“

`

n
k

˘

2n
.

• If we flip a strange coin with P pHq “ p and P pT q “ q then the #S “ 2n outcomes are
not equally likey. In this case we have the more general formula

P pk headsq “

ˆ

n

k

˙

P pHqkP pT qn´k “

ˆ

n

k

˙

pkqn´k.

This agrees with the previous formula when p “ q “ 1{2.

• These binomial probabilities add to 1 because of the binomial theorem:

n
ÿ

k“0

ˆ

n

k

˙

pkqn´k “ pp` qqn “ 1n “ 1.

• In general, a probability measure P on a sample space S must satisfy three rules:

1. For all E Ď S we have P pEq ě 0.

2. For all E1, E2 Ď S with E1 X E2 “ H we have

P pE1 Y E2q “ P pE1q ` P pE2q.

3. We have P pSq “ 1.

• Many other properties follow from these rules, such as the principle of inclusion-exclusion,
which says that for general events E1, E2 Ď S we have

P pE1 Y E2q “ P pE1q ` P pE2q ´ P pE1 X E2q.

• Also, if E1 is the complement of an event E Ď S then we have P pE1q “ 1´ P pEq.
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• Venn diagrams are useful for verifying identities such as de Morgan’s laws:

pE1 X E2q
1 “ E11 Y E

1
2,

pE1 Y E2q
1 “ E11 X E

1
2.

• Given events E1, E2 Ď S we define the conditional probability:

P pE1|E2q “
P pE1 X E2q

P pE2q
.

• Bayes’ Theorem relates the conditional probabilites P pE1|E2q and P pE2|E1q:

P pE1q ¨ P pE2|E1q “ P pE2q ¨ P pE1|E2q.

• The events E1, E2 are called independent if any of the following formulas hold:

P pE1|E2q “ P pE1q or P pE2|E1q “ P pE2q or P pE1 X E2q “ P pE1q ¨ P pE2q.

• Suppose our sample space is partitioned as S “ E1 Y E2 Y ¨ ¨ ¨ Y Em with Ei X Ej “ H
for all i ‰ j. For any event F Ď S the law of total probability says

P pF q “ P pE1 X F q ` P pE2 X F q ` ¨ ¨ ¨ ` P pEm|F q

P pF q “ P pE1q ¨ P pF |E1q ` P pE2q ¨ P pF |E2q ` ¨ ¨ ¨ ` P pEmq ¨ P pF |Emq.

• Then the general version of Bayes’ Theorem says that

P pEk|F q “
P pEk X F q

P pF q
“

P pEkq ¨ P pF |Ekq
řm
i“1 P pEiq ¨ P pF |Eiq

.

• The binomial coefficients have four different interpretations:

ˆ

n

k

˙

“ entry in the nth row and kth diagonal of Pascal’s Triangle,

“ coefficient of xkyn´k in the expansion of px` yqn,

“ #pwords made from k copies of one letter and n´ k copies of another letterq,

“ #pways to choose k unordered things without replacement from n thingsq.

• And they have a nice formula:

ˆ

n

k

˙

“
n!

k!ˆ pn´ kq!
“
nˆ pn´ 1q ˆ ¨ ¨ ¨ ˆ pn´ k ` 1q

k ˆ pk ´ 1q ˆ ¨ ¨ ¨ ˆ 1
.
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• Ordered things are easier. Consider words of length k from an alphabet of size n:

#pwordsq “ nˆ nˆ ¨ ¨ ¨ ˆ n “ nk,

#pwords without repeated lettersq “ nˆ pn´ 1q ˆ ¨ ¨ ¨ ˆ pn´ k ` 1q “
n!

pn´ kq!
.

• More generally, the number of words containing k1 copies of the letter “a1,” k2 copies of
the letter “a2,” . . . and ks copies of the letter “as” is

ˆ

k1 ` k2 ` ¨ ¨ ¨ ` ks
k1, k2, . . . , ks

˙

“
pk1 ` k2 ` ¨ ¨ ¨ ` ksq!

k1!ˆ k2!ˆ ¨ ¨ ¨ ˆ ks!

• These numbers are called multinomial coefficients because of the multinomial theorem:

pp1 ` p2 ` ¨ ¨ ¨ ` psq
n “

ÿ

ˆ

n

k1, k2, . . . , ks

˙

pk11 p
k2
2 ¨ ¨ ¨ p

ks
s ,

where the sum is over all possible choices of k1, k2, . . . , ks such that k1`k2`¨ ¨ ¨`ks “ n.
Suppose that we have an s-sided die and pi is the probability that side i shows up. If
the die is rolled n times then the probability that side i shows up exactly ki times is the
multinomial probability:

P pside i shows up ki timesq “

ˆ

n

k1, k2, . . . , ks

˙

pk11 p
k2
2 ¨ ¨ ¨ p

ks
s .

• Finally, suppose that an urn contains r red and g green balls. If n balls are drawn
without replacement then

P pk redq “

`

r
k

˘`

g
n´k

˘

`

r`g
n

˘ .

More generally, if the urn contains ri balls of color i for i “ 1, 2, . . . , s then the probability
of getting exactly ki balls of color i is

P pki balls of color iq “

`

r1
k1

˘`

r2
k2

˘

¨ ¨ ¨
`

rs
ks

˘

`

r1`r2`¨¨¨`rs
k1`k2`¨¨¨`ks

˘ .

These formulas go by a silly name: hypergeometric probability.

Key Topics from Chapter 2

• Let S be the sample space of an experiment. A random variable is any function X :
S Ñ R that assigns to each outcome s P S a real number Xpsq P R. The support of X is
the set of possible values SX Ď R that X can take. We say that X is a discrete random
variable is the set SX doesn’t contain any continuous intervals.
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• The probability mass function (pmf) of a discrete random variable X : S Ñ R is the
function fX : RÑ R defined by

fXpkq “

#

P pX “ kq if k P SX ,

0 if k R SX .

• We can display a probability mass function using either a table, a line graph, or a
probability histogram. For example, suppose that a random variable X has pmf fX
defined by the following table:

k ´1 1 2

fXpkq
2
6

3
6

1
6

Here is the line graph and the histogram:

• The expected value of a random variable X : S Ñ R with support SX Ď R is defined by
either of the following formulas:

ErXs “
ÿ

kPSX

k ¨ P pX “ kq “
ÿ

sPS

Xpsq ¨ P psq.

On the one hand, we interpret this as the center of mass of the pmf. On the other hand,
we interpret this as the long run average value of X if the experiment is performed many
times.

• Consider any random variables X,Y : S Ñ R and constants α, β P R. The expected
value satisfies the following algebraic identities:

Erαs “ α,

ErαXs “ αErXs,

ErX ` αs “ ErXs ` α,

ErX ` Y s “ ErXs ` ErY s,

ErαX ` βY s “ αErXs ` βErY s.

In summary, the expected value is a linear function.
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• Let X : S Ñ R be a random variable with mean µ “ ErXs. We define the variance as
the expected value of the squared distance between X and µ:

VarpXq “ ErpX ´ µq2s.

Using the properties above we also have

VarpXq “ ErX2s ´ µ2 “ ErX2s ´ ErXs2.

Since we feel bad about squaring the distance, we define the standard deviation by taking
the square root of the variance:

σ “
a

VarpXq.

• For random variables X,Y : S Ñ R with ErXs “ µX and ErY s “ µY , we define the
covariance as follows:

CovpX,Y q “ ErpX ´ µXqpY ´ µY qs.

Using the above properties we also have

CovpX,Y q “ ErXY s ´ ErXs ¨ ErY s.

Observe that CovpX,Xq “ ErX2s ´ ErXs2 “ VarpXq.

• For any X,Y, Z : S Ñ R and α, β P R we have

CovpX,Y q “ CovpY,Xq,

CovpαX ` βY, Zq “ αCovpX,Zq ` βCovpY, Zq.

We say that covariance is a symmetric and bilinear function.

• Variance by itself satisfies the following algebraic identities:

Varpαq “ 0,

VarpαXq “ α2VarpXq,

VarpX ` αq “ VarpXq,

VarpX ` Y q “ VarpXq `VarpY q ` 2CovpX,Y q.

• For discrete random variables X,Y : S Ñ R we define their joint pmf fXY as follows:

fXY pk, `q “ P pX “ k and Y “ `q.

We say that X and Y are independent if for all k and ` we have

fXY pk, `q “ fXpkq ¨ fY p`q “ P pX “ kq ¨ P pY “ `q.

If X and Y are independent then we must have ErXY s “ ErXs ¨ ErY s, which implies
that CovpX,Y q “ 0 and VarpX ` Y q “ VarpXq `VarpY q. The converse statements are
not true in general.
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• Let VarpXq “ σ2X and VarpY q “ σ2Y . If both of these are non-zero then we define the
coefficient of coerrelation:

ρXY “
CovpX,Y q

σX ¨ σY
.

We always have ´1 ď ρXY ď 1.

• Let p` q “ 1 with p ě 0 and q ě 0. A Bernoulli random variable has the following pmf:

k 0 1

P pX “ kq q p

We compute

ErXs “ 0 ¨ q ` 1 ¨ p “ p,

ErX2s “ 02 ¨ q ` 12 ¨ p “ p,

VarpXq “ ErX2s ´ ErXs2 “ p´ p2 “ pp1´ pq “ pq.

• A sum of independent Bernoulli random variables is called a binomial random variable.
For example, suppose that X1, X2, . . . , Xn are independent Bernoullis with P pXi “ 1q “
p. Let X “ X1 `X2 ` ¨ ¨ ¨ `Xn. Then from linearity of expectation we have

ErXs “ ErX1s ` ErX2s ` ¨ ¨ ¨ ` ErXns “ p` p` ¨ ¨ ¨ ` p “ np

and from independence we have

VarpXq “ VarpX1q `VarpX2q ` ¨ ¨ ¨ `VarpXnq “ pq ` pq ` ¨ ¨ ¨ ` pq “ npq.

If we think of each Xi as the number of heads from a coin flip then X is the total number
of heads in n flips of a coin. Thus X has a binomial pmf:

P pX “ kq “

ˆ

n

k

˙

pkqn´k.

• Suppose an urn contains r red balls and g green balls. Grab n balls without replacement
and let X be the number of red balls you get. We say that X has a hypergeometric pmf:

P pX “ kq “

`

r
k

˘`

g
n´k

˘

`

r`g
n

˘ .

Let Xi “ 1 if the ith ball is red and Xi “ 0 if the ith ball is green. Then Xi is a
Bernoulli random variable with P pXi “ 1q “ r{pr ` gq, hence ErXis “ r{pr ` gq, and
from linearity of expectation we have

ErXs “ ErX1s ` ErX2s ` ¨ ¨ ¨ ` ErXns “
r

r ` g
`

r

r ` g
` ¨ ¨ ¨ `

r

r ` g
“

nr

r ` g
.

Since the Xi are not independent, we can’t use this method to compute the variance.1

1The variance is nrgpr`g´nq

pr`gq2pr`g´1q
but you don’t need to know this.
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• Consider a coin with P pHq “ p and let X be the number of coin flips until you see H.
We say that X is a geometric random variable with pmf

P pX “ kq “ P pT qk´1 ¨ P pHq “ qk´1p.

By manipulating the geometric series2 we can show that

P pX ą kq “ qk and P pk ď X ď `q “ qk´1 ´ q`.

By manipulating the geometric series a bit more we can show that

ErXs “
1

p
.

In other words, we expect to see the first H on the p1{pq-th flip of the coin.3

Key Topics from Chapter 3

• Instead of a pmf fXpkq “ P pX “ kq, a continuous random variable X is defined by a
probability density function (pdf) fX : RÑ R. Here is a picture:

By definition the pdf must satisfy

fXpxq ě 0 for all x P R and

ż 8

´8

fXpxq dx “ 1.

Then for any real numbers a ď b we define

P pa ă X ă bq “

ż b

a
fXpxq dx.

Note that this implies P pX “ kq “ P pk ď X ď kq “ 0 for any k P R.

2If |q| ă 1 then 1` q ` q2 ` ¨ ¨ ¨ “ 1{p1´ qq.
3The variance is q{p2 but you don’t need to know this.
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• Let fX : R Ñ R be the pdf of a continuous random variable X. Then we define the
expected value by the formula

ErXs “

ż 8

´8

x ¨ fXpxq dx.

Just as in the discrete case, this integral represents the center of mass of the distribution.
More generally, we define the rth moment of X by the formula

ErXrs “

ż 8

´8

xr ¨ fXpxq dx.

As with the discrete case, the variance is defined as the average squared distance between
X and its mean µ “ ErXs. That is, we have

VarpXq “ ErpX ´ µq2s

“

ż 8

´8

px´ µq2 ¨ fXpxq dx

“

ż 8

´8

px2 ´ 2µx` x2q ¨ fXpxq dx

“

ˆ
ż 8

´8

x2 ¨ fXpxq dx

˙

´ 2µ

ˆ
ż 8

´8

x ¨ fXpxq dx

˙

` µ2
ˆ
ż 8

´8

fXpxq dx

˙

“ ErX2s ´ 2µ ¨ ErXs ` µ2 ¨ 1

“ ErX2s ´ 2µ2 ` µ2

“ ErX2s ´ µ2

“ ErX2s ´ ErXs2.

• The uniform distribution on a real interval ra, bs Ď R has the following pdf:

You should practice the definitions by proving that

ErXs “
a` b

2
and VarpXq “

pb´ aq2

12
.
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• Let X be a discrete random variable with pmf P pX “ kq and let Y be a continuous
random variable with pdf fY . Suppose that for all integers k we have

P pX “ kq « fY pkq.

Then for any integers a ď b we can approximate the probability P pa ď X ď bq by the
area under the graph of fY , as follows:

P pa ď X ď bq «

ż b`1{2

a´1{2
fY ptq dt,

P pa ă X ď bq «

ż b`1{2

a`1{2
fY ptq dt,

P pa ď X ă bq «

ż b´1{2

a´1{2
fY ptq dt,

P pa ă X ă bq «

ż b´1{2

a`1{2
fY ptq dt.

Here’s a picture illustrating the second formula:

• Let X be a (discrete) binomial random variable with parameters n and p. If np and
np1´ pq are both large then de Moivre (1730) and Laplace (1810) showed that

P pX “ kq “

ˆ

n

k

˙

pkp1´ pqn´k «
1

a

2πnpp1´ pq
e´pk´npq

2{2npp1´pq.

For example, let X be the number of heads in 3600 flips of a fair coin. Then we have

P p1770 ď X ď 1830q «

ż 1830`0.5

1770´0.5

1
?

1800π
e´px´1800q

2{1800 dx « 69.07%.

• In general, the normal distribution with mean µ and σ2 is defined by the following pdf:

npx;µ, σ2q “
1

?
2πσ2

e´px´µq
2{2σ2

.

We will write X „ Npµ, σ2q for any random variable with this pdf.
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• The stability theorem says that if X and Y are normal and if α, β, γ are constant then

αX ` βY ` γ is also normal.

• A special case of the above fact says that normal random variables can be standardized:

X „ Npµ, σ2q ðñ Z “
X ´ µ

σ
„ Np0, 1q.

If Z is standard normal then it has the following cumulative density function (cdf):

Φpzq “ P pZ ď zq “

ż z

´8

1
?

2π
e´x

2{2 dx.

The values of Φpzq can be looked up in a table. Furthermore, for any probability
0 ă α ă 1 we define the critical value zα to be the unique number with the property

ż 8

zα

1
?

2π
e´x

2{2 dx “ P pZ ě zαq “ α.

These numbers can also be looked up in a table. Here are some pictures:

• Let X1, X2, . . . , Xn be an iid sample with µ “ ErXis and σ2 “ VarpXiq. If X “

pX1 ` ¨ ¨ ¨ `Xnq{n is the sample mean then we have

ErXs “ µ and VarpXq “ σ2{n.

The fact that VarpXq Ñ 0 as nÑ8 is called the Law of Large Numbers (LLN). If n is
large then the Central Limit Theorem (CLT) says that X is approximately normal:

X “
X1 ` ¨ ¨ ¨ `Xn

n
« Npµ, σ2{nq.

This is the most important theorem in all of (classical) statistics.

• Application: Estimating a proportion. Let p be proportion of yes voters in a population.
To estimate p we take a random sample of n voters and let Y be the number who
say yes. Then the sample proportion p̂ “ Y {n is an unbiased estimator for p because
Erp̂s “ p. Furthermore, since Varpp̂q “ pp1´ pq{n we know that pp̂´ pq{

a

pp1´ pq{n is
approximately Np0, 1q.
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Thus we obtain the following approximate p1´ αq100% intervals for the unknown p:

p ă p̂` zα ¨
a

p̂p1´ p̂q{n,

p ą p̂´ zα ¨
a

p̂p1´ p̂q{n,

|p´ p̂| ă zα{2 ¨
a

p̂p1´ p̂q{n.

If we want to test the hypothesis H0 “ “p “ p0” at the α level of significance then we
use the following rejection regions:

p̂ ą p0 ` zα ¨
a

p0p1´ p0q{n if H1 “ “p ą p0, ”

p̂ ă p0 ´ zα ¨
a

p0p1´ p0q{n if H1 “ “p ă p0, ”

|p̂´ p0| ą zα{2 ¨
a

p0p1´ p0q{n if H1 “ “p ‰ p0.”

• Application: Estimating a mean. Let X1, X2, . . . , Xn be an iid sample from a normal
distribution with ErXis “ µ and VarpXiq “ σ2. The sample mean X is an unbiased
estimator for µ because ErXs “ µ. Furthermore, since VarpXq “ σ2{n we know from
the stability theorem that X is exactly Npµ, σ2{nq.

If σ2 is known then we obtain the following exact p1´ αq100% intervals for µ:

µ ă X ` zα ¨
a

σ2{n,

µ ą X ´ zα ¨
a

σ2{n,

|µ´X| ă zα{2 ¨
a

σ2{n.

If we want to test the hypothesis H0 “ “µ “ µ0” at the α level of significance then we
use the following rejection regions:

X ą µ0 ` zα ¨
a

σ2{n if H1 “ “µ ą µ0, ”

X ă µ0 ´ zα ¨
a

σ2{n if H1 “ “µ ă µ0, ”

|X ´ µ0| ą zα{2 ¨
a

σ2{n if H1 “ “µ ‰ µ0.”

If σ2 is unknown then we replace it with the sample variance

S2 “
1

n´ 1

n
ÿ

i“1

pXi ´Xq
2.

If n is small then we also replace zα with tαpn´ 1q. This is because the random variable
pX ´ µq{

a

S2{n has a t-distribution with n´ 1 degrees of freedom.

• Chi-squared distributions are not on the exam.
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