MTH 224 Summer 2019
Review Notes Drew Armstrong

Key Topics from Chapter 1

e Suppose an experiment has a finite set S of equally likely outcomes. Then the probability
of any event £ < S is

_#E

=45

e For example, if we flip a fair coin n times then the #5 = 2" outcomes are equally likely.
The number of sequences with k H’s and n — k T is (Z), thus we have

P(E)

P(k heads) #(ways to#g? k heads) _ (an)

e If we flip a strange coin with P(H) = p and P(T') = ¢ then the #S = 2" outcomes are
not equally likey. In this case we have the more general formula

P(k heads) = (Z)P(H)kP(T)”k - (Z) prgF.

This agrees with the previous formula when p = ¢ = 1/2.

e These binomial probabilities add to 1 because of the binomial theorem:
N (n
> < >p’“q"_’“ =(p+q"=1"=1
k=0 k

e In general, a probability measure P on a sample space S must satisfy three rules:
1. For all E < S we have P(E) > 0.
2. For all E1, E5 € S with Fq1 n Ey = (§ we have

P(El U EQ) = P(E1> + P(Eg)

3. We have P(S) = 1.

e Many other properties follow from these rules, such as the principle of inclusion-exclusion,
which says that for general events F1, Fo € S we have

P(El U EQ) = P(El) + P(EQ) — P(El N E2)

e Also, if F’ is the complement of an event E < S then we have P(E’') =1 — P(E).



e Venn diagrams are useful for verifying identities such as de Morgan’s laws:
(El M EQ)/ = Ei ) Eé,
(El ) EQ)/ = Ei M Eé

e Given events F1, Fy € S we define the conditional probability:

P(El M EQ)

P(E1|E2) = P(Eg)

e Bayes’ Theorem relates the conditional probabilites P(E1|E2) and P(Eq|Er):

P(Eq) - P(E2|E1) = P(Ez) - P(E1|Ey).

e The events F1, F5 are called independent if any of the following formulas hold:

P(E1|E2) = P(El) or P(EQ‘El) = P(EQ) or P(El M EQ) = P(El) . P(EQ)

e Suppose our sample space is partitioned as S = Ey U Fo U --- U By, with E; 0 By =
for all i # j. For any event F' < S the law of total probability says
P(F)=PE\nF)+P(EanF)+---+ P(E,|F)
P(F) = P(Ey) - P(F|Ey) + P(E3) - P(F|E3) + -+ P(Ey,,) - P(F|Ep).

e Then the general version of Bayes’ Theorem says that

P(Ey ~ F) P(Ey) - P(F|Ey,)
P(E|F) = PIEF) = Z;ilPk(Ei) . P(FkyEi)'

e The binomial coefficients have four different interpretations:

(Z) = entry in the nth row and kth diagonal of Pascal’s Triangle,

= coefficient of 2*y"~* in the expansion of (z + )",
= #(words made from k copies of one letter and n — k copies of another letter),

= #(ways to choose k unordered things without replacement from n things).

e And they have a nice formula:

ny n! nax(n—1)x---x(n—k+1)
<k>_k!x(n—k)!_ Ex(k—1)x---x1 '




e Ordered things are easier. Consider words of length k from an alphabet of size n:

#(words) =n xn x --- x n =nk,

#(words without repeated letters) =n x (n—1) x --- x (n—k+1) =

(n—k)!

e More generally, the number of words containing k1 copies of the letter “ay,” ko copies of
the letter “ao,” ...and ks copies of the letter “as” is

(k:1+k:2+~-+k5> (k1 + ka4 -+ k)

i koo ks ) kil X kgl X - - x kg

e These numbers are called multinomial coefficients because of the multinomial theorem:

n

(p]. +p2++p8)n :Z <k1 k2

k1, k ks
ks>p11p22 RV
where the sum is over all possible choices of k1, ko, ..., ks such that k1 + ko +-- -+ ks = n.
Suppose that we have an s-sided die and p; is the probability that side ¢ shows up. If
the die is rolled n times then the probability that side ¢ shows up exactly k; times is the
multinomial probability:

n
P(side i shows up k; times) = <k1 o 1 )plflp§2 o 'plgs-
) PR S

e Finally, suppose that an urn contains r red and g green balls. If n balls are drawn
without replacement then
™N( g
() (225)

(rJrg)

n

More generally, if the urn contains r; balls of color ¢ for ¢ = 1,2, ..., s then the probability
of getting exactly k; balls of color ¢ is

P(k red) =

(k) Gea) - (i)
(T1+7’2+~~~+rs) ’
k1+ko+-+ks

P(k; balls of color i) =

These formulas go by a silly name: hypergeometric probability.

Key Topics from Chapter 2

e Let S be the sample space of an experiment. A random wvariable is any function X :
S — R that assigns to each outcome s € S a real number X (s) € R. The support of X is
the set of possible values Sx < R that X can take. We say that X is a discrete random
variable is the set Sx doesn’t contain any continuous intervals.



The probability mass function (pmf) of a discrete random variable X : S — R is the
function fx : R — R defined by

P(X =k) ifke Sy,
0 if k ¢ Sy.

We can display a probability mass function using either a table, a line graph, or a
probability histogram. For example, suppose that a random variable X has pmf fx
defined by the following table:

k ‘ -1 1 2
RCIEEE
Here is the line graph and the histogram:
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The expected value of a random variable X : S — R with support Sx < R is defined by
either of the following formulas:

= Y k-P(X=k) =) X(s)

kESX seS

On the one hand, we interpret this as the center of mass of the pmf. On the other hand,
we interpret this as the long run average value of X if the experiment is performed many
times.

Consider any random variables X,Y : S — R and constants «, 3 € R. The expected
value satisfies the following algebraic identities:

Ela] = a,

ElaX] = aB[X],
E[X + a] = E[X] + «,
E[X +Y]=E[X]+ E[Y],

ElaX + BY] = aE[X] + BE[Y].

In summary, the expected value is a linear function.



Let X : S — R be a random variable with mean y = E[X]. We define the variance as
the expected value of the squared distance between X and pu:

Var(X) = E[(X — 1))
Using the properties above we also have
Var(X) = E[X?] — pu? = E[X?] - E[X]?.

Since we feel bad about squaring the distance, we define the standard deviation by taking

the square root of the variance:
o =4/ Var(X).

For random variables X,Y : S — R with E[X]| = px and E[Y] = py, we define the
covariance as follows:

Cov(X,Y) = E[(X — pux)(Y — py)].
Using the above properties we also have

Cov(X,Y) = E[XY] - E[X] - E[|Y].
Observe that Cov(X, X) = E[X?] — E[X]? = Var(X).
For any XY, Z:5 — R and o, 8 € R we have

Cov(X,Y) = Cov(Y, X),
Cov(aX + BY,Z) = aCov(X, Z) + BCov(Y, Z).

We say that covariance is a symmetric and bilinear function.

Variance by itself satisfies the following algebraic identities:

Var(a) =0,
Var(aX) = a*Var(X),
Var(X + a) = Var(X),
Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y).

For discrete random variables X,Y : S — R we define their joint pmf fxy as follows:
fxy(k,{)=P(X =kand Y = /).
We say that X and Y are independent if for all k and £ we have
fxy (k. 0) = fx(k)- fy(t) = P(X = k) - P(Y = {).

If X and Y are independent then we must have E[XY] = E[X] - E[Y], which implies
that Cov(X,Y) =0 and Var(X +Y) = Var(X) + Var(Y). The converse statements are
not true in general.



e Let Var(X) = 0% and Var(Y) = oZ. If both of these are non-zero then we define the
coefficient of coerrelation:

We always have —1 < pxy < 1.
o Let p+q =1 with p>0and ¢ > 0. A Bernoulli random variable has the following pmf:
k ‘ 01
P(X=k|q p

We compute
E[X]=0-q+1-p=p,
E[X*1=0%q+1*-p=p,
Var(X) = E[X?] - E[X]* = p—p* = p(1 - p) = pg.
e A sum of independent Bernoulli random variables is called a binomial random variable.

For example, suppose that X1, Xo, ..., X, are independent Bernoullis with P(X; = 1) =
p. Let X = X3 + Xo + -+ + X,,. Then from linearity of expectation we have

EX]|=E[Xi1|+E[Xs]+ -+ E[X,]=p+p+- - +p=mnp
and from independence we have
Var(X) = Var(X;) + Var(Xs2) + - - - + Var(X,,) = pg+ pg + - - - + pq = npq.

If we think of each X; as the number of heads from a coin flip then X is the total number
of heads in n flips of a coin. Thus X has a binomial pmf:

P(X =k) = (Z) Pk,

e Suppose an urn contains r red balls and g green balls. Grab n balls without replacement
and let X be the number of red balls you get. We say that X has a hypergeometric pmf:

() (2
()
n
Let X; = 1 if the ith ball is red and X; = 0 if the ith ball is green. Then X; is a

Bernoulli random variable with P(X; = 1) = r/(r + g), hence E[X;] = r/(r + g), and
from linearity of expectation we have

P(X =k) =

r r T nr
+ + -+ = .
r+g r+g r+g r+g

E[X]=E[X1]+ E[X2] + -+ E[X,] =

Since the X; are not independent, we can’t use this method to compute the Varianceﬂ

nrg(r+g—mn)

1 . e
The variance is Tt Zrto—1)

but you don’t need to know this.



e Consider a coin with P(H) = p and let X be the number of coin flips until you see H.
We say that X is a geometric random variable with pmf

P(X = k) = P P(H) = ¢*'p.
By manipulating the geometric sem’eﬂ we can show that

By manipulating the geometric series a bit more we can show that

In other words, we expect to see the first H on the (1/p)-th flip of the coinf]

Key Topics from Chapter 3

e Instead of a pmf fx(k) = P(X = k), a continuous random variable X is defined by a
probability density function (pdf) fx : R — R. Here is a picture:

e ()
srgx ) gxf\
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By definition the pdf must satisfy
fx(x)=0foralxeR and foo fx(z)dz = 1.
-0
Then for any real numbers a < b we define
Pla< X <b) = Jb fx(x)dx.

Note that this implies P(X = k) = P(k < X < k) =0 for any k € R.

If g <1lthen 14+ qg+¢*+---=1/(1—q).
3The variance is g/p? but you don’t need to know this.



e Let fx : R — R be the pdf of a continuous random variable X. Then we define the
expected value by the formula

E[X] = f z- fx(x)dz.
—0o0
Just as in the discrete case, this integral represents the center of mass of the distribution.
More generally, we define the rth moment of X by the formula
0
E[X"] = J " fx(x)dx.
—0o0
As with the discrete case, the variance is defined as the average squared distance between

X and its mean p = E[X]. That is, we have

Var(X) = E[(X - p)’]

([ ax@ae) o ([ apewan) v ([ rewas)
— B[X?] —2p-E[X] + %1

= B[X?] = 2p® + 2

= B[X?] - p?

= E[X?] - E[X]?.

Toteal Aree = 1

A ‘
|I \ >
'l o b =
You should practice the definitions by proving that
b b—a)?
E[x] =T and  Var(x) = 0=

2 12



e Let X be a discrete random variable with pmf P(X = k) and let Y be a continuous
random variable with pdf fy. Suppose that for all integers k we have

P(X = k)~ fy(k).

Then for any integers a < b we can approximate the probability P(a < X < b) by the
area under the graph of fy, as follows:

b+1/2
Pla< X <b) ~ J fy(t)dt,
a—1/2
b+1/2
P@<X<®wj Fy () dt,
a+1/2
b—1/2
Pla< X <b)~ j fy (t) dt,
a—1/2
b—1/2
Pla< X <b)~ J fy (t)dt.
a+1/2

Here’s a picture illustrating the second formula:

1/ | * . I[ 1 »
o a4 b

e Let X be a (discrete) binomial random variable with parameters n and p. If np and
n(1 — p) are both large then de Moivre (1730) and Laplace (1810) showed that

n 1 2
P(X = k) = k(1 — p)F & e~ (k=np)*/2np(1—p)
( ) (/f>p 4= 2mnp(1 — p)
For example, let X be the number of heads in 3600 flips of a fair coin. Then we have

1830+4-0.5 2
e~ (x—1800)/1800 7.. ~ 69.07%.

P(1770 < X <1830 zf
( ) 1770—0.5 V18007

e In general, the normal distribution with mean p and o2 is defined by the following pdf:
1
V2mo?

We will write X ~ N(u,0?) for any random variable with this pdf.

n(z; p,0?) = e (@mm)?/20%,

Ne}



The stability theorem says that if X and Y are normal and if a, 3, are constant then

aX + BY +~ is also normal.

A special case of the above fact says that normal random variables can be standardized:

_X—up
N g

X ~ N(u,0?) — Z ~ N(0,1).

If Z is standard normal then it has the following cumulative density function (cdf):

1

o V2T

e 12 dy.

y@:mz<@:f

The values of ®(z) can be looked up in a table. Furthermore, for any probability
0 < a < 1 we define the critical value z, to be the unique number with the property

0
1 2
—— e Pdr = P(Z > 2z) =
e T = Zo Q.
Laén ( )

These numbers can also be looked up in a table. Here are some pictures:

Let X1, Xs,...,X, be an did sample with p = E[X;] and ¢? = Var(X;). If X =
(X1 + -+ X,,)/n is the sample mean then we have

E[X]=p and Var(X) = o?/n.

The fact that Var(X) — 0 as n — oo is called the Law of Large Numbers (LLN). If n is
large then the Central Limit Theorem (CLT) says that X is approximately normal:

Xi 4+ X,
n

X - ~ N(u,02/n).

This is the most important theorem in all of (classical) statistics.

Application: Estimating a proportion. Let p be proportion of yes voters in a population.
To estimate p we take a random sample of n voters and let Y be the number who
say yes. Then the sample proportion p = Y /n is an unbiased estimator for p because

E[p] = p. Furthermore, since Var(p) = p(1 — p)/n we know that (p — p)/+/p(1 — p)/n is
approximately N(0,1).

10



Thus we obtain the following approximate (1 — «)100% intervals for the unknown p:

P <P+ za-/p(l—p)/n,
P>D— 2a- }5( )/
|p_ﬁ| < Zq/2 " (1 )/

If we want to test the hypothesis Hy = “p = py” at the « level of significance then we
use the following rejection regions:

D> po+ 20 /po(l —po)/n if Hy = “p > po,”
P <po—za \po(l —po)/n it Hy = “p <po,”
[P — pol > 2as2 - v/Po(1 —po)/n if Hy = “p # po.”
e Application: Estimating a mean. Let X, X5,..., X, be an iid sample from a normal

distribution with E[X;] = p and Var(X;) = ¢%. The sample mean X is an unbiased
estimator for p because E@] = p. Furthermore, since Var(X) = 02/n we know from
the stability theorem that X is exactly N(u,0?/n).

If o2 is known then we obtain the following exact (1 — a)100% intervals for u:

<X+ 241/ 02/n,
> X — 24 -/ 0%/n,
= X| < zoy2 - /021

If we want to test the hypothesis Hy = “p = uo” at the « level of significance then we
use the following rejection regions:

X > o + 2o - 02/n if Hy = “pu > po,”
X < po — za - 02/n if H = “p < po,”
X — po| > zas2 - A/ 0%/ if Hy = “p # po.”

If o2 is unknown then we replace it with the sample variance
n

il DX - X)?

If n is small then we also replace z, with t,(n —1). This is because the random variable

(X — u)/+/S?/n has a t-distribution with n — 1 degrees of freedom.

e Chi-squared distributions are not on the exam.
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