
Math 224 Spring 2022
Homework 6 Drew Armstrong

1. Rounding Error. Your friend has a list of ten real numbers, whose values are unknown
to you: x1, . . . , x10 ∈ R. Your friend rounds each number to the nearest integer and sends
you the results: X1, X2, . . . , X10 ∈ Z. We will assume that Xi = xi + Ui, where each Ui is a
uniform random variable on the interval [−1/2, 1/2].

(a) Compute E[Ui] and Var(Ui).
(b) Consider the sum of the rounded numbers X = X1 + · · · + X10 and the sum of the

unrounded numbers x = x1 + · · ·+ x10. Prove that E[X] = x.
(c) Assuming that the random variables Ui are independent, use the CLT to estimate the

probability that |X − x| > 1/2. [Hint: The CLT says that X − x = U1 + · · · + U10 is
approximately normal. You just need to compute E[X − x] and Var(X − x).]

(a): The density of Ui is given by

f(x) =

{
1 −1/2 < x < 1/2,

0 otherwise.

Hence

E[Ui] =

∫ 1/2

−1/2
x · 1 dx = 0 and Var(Ui) = E[U2

i ]− 02 =

∫ 1/2

−1/2
x2 · 1 dx = 1/12.

(b): Since Xi = xi + Ui and since xi is constant we have

E[Xi] = E[xi + Ui] = xi + E[Ui] = xi + 0 = xi.

Then adding these up gives

E[X] = E[X1 +X2 + · · ·+X10]

= E[X1] + E[X2] + · · ·+ E[X10]

= x1 + x2 + · · ·+ x10

= x.

(c): Note that X−x = U1 +U2 + · · ·+U10 is a sum of independent and identically distributed
random variables. Presumably 10 is a large enough number that this sum is approximately
normal. The mean is1

E[X − x] = E[U1] + E[U2] + · · ·+ E[U10] = 0 + 0 + · · ·+ 0 = 0,

and the variance is

Var(X − x) = Var(U1) + Var(U2) + · · ·+ Var(U10)

= 1/12 + 1/12 + · · ·+ 1/12

= 10/12.

1We can also use part (b) to get E[X − x] = E[X]− x = x− x = 0.



It follows that X − x is approximately N(0, 10/12) and hence Z = (X − x)/
√

10/12 is ap-
proximately N(0, 1). Therefore we have

P (|X − x| > 1/2) = P (X − x < −1/2) + P (X − x > 1/2)

= P

(
X − x√

10/12
<
−1/2√
10/12

)
+ P

(
X − x√

10/12
>

1/2√
10/12

)
≈ P (Z < −0.55) + P (Z > 0.55)

= Φ(−0.55) + (1− Φ(0.55))

= (1− Φ(0.55)) + (1− Φ(0.55))

= 2 (1− Φ(0.55))

= 2 (1− 0.7088)

= 58.24%.

My computer gives the exact answer 58.904%, so this approximation is pretty good.

Remark: Note that the real number x rounds to the integer X if and only if |X − x| ≤ 1/2.
Therefore P (|X − x| > 1/2) is the probability that x does not round to X. In other words,
there is a 58.9% chance that the following two procedures yield different results:

• Round each of 10 numbers to the nearest integer and then add them.
• Add 10 numbers and then round the sum to the nearest integer.

2. Tail Probabilities. Consider a standard normal variable Z ∼ N(0, 1). Solve for a.

(a) P (Z > a) = 93%
(b) P (Z < a) = 35%
(c) P (|Z| > a) = 2%
(d) P (|Z| < a) = 80%

(a): We have Φ(a) = 7%. Since a < 0 this is not in our table, so we use symmetry to write

Φ(−a) = 1− Φ(a)

Φ(−a) = 93%

−a ≈ 1.475

a ≈ −1.475.

Here is a picture:



(b): We have Φ(a) = 35%. Since a < 0 this is not in our table, so we use symmetry:

Φ(−a) = 1− Φ(a)

Φ(−a) = 65%

−a ≈ 0.385

a ≈ −0.385.

Here is a picture:

(c): We can rewrite P (|Z| > a) = 2% as

P (Z < −a) + P (Z > a) = 2%

Φ(−a) + (1− Φ(a)) = 2%

(1− Φ(a)) + (1− Φ(a)) = 2%

2 (1− Φ(a)) = 2%

Φ(a) = 99%

a ≈ 2.325.

Here is a picture:

(d): We can rewrite P (|Z| < a) = 80% as

P (−a < Z < a) = 80%

Φ(a)− Φ(−a) = 80%

Φ(a)− (1− Φ(a)) = 80%

2Φ(a)− 1 = 80%

Φ(a) = 90%

a ≈ 1.28.

Here is a picture:



Remark: I wrote out the solutions using algebra, but it’s easier to work from a picture.

3. A Bernoulli Hypothesis Test. A six-sided die has sides labeled {1, 2, 3, 4, 5, 6}. Let
p be the probability of getting a 6. Before performing any experiments we will assume that
H0 = “p = 1/6” is true. Now suppose that you roll the die 600 times and let Y be the number
of times you get 6. Which values of Y would cause you to reject H0 in favor of H1 = “p > 1/6”
at the 99% level of confidence? That is, what is the rejection region?

We can develop the answer from scratch or we can just quote a formula.

Quote a Formula: Consider the sample proportion p̂ = Y/n. When testing H0 = “p = p0”
against H1 = “p > p0” at confidence level 1− α, the rejection region is

p̂ > p0 + zα ·
√
p0(1− p0)

n

In our case we have n = 600, p0 = 1/6 and 1− α = 99% so the rejection region is

p̂ >
1

6
+ z1% ·

√
(1/6)(5/6)

600

Y

600
>

1

6
> (2.325) ·

√
(1/6)(5/6)

600
Y

600
> 0.202

Y > 121.2.

Thus we will reject H0 = “p = 1/6” for H1 = “p > 1/6” when Y ≥ 122. In other words, if we
roll a die 600 times and get a 6 at least 122 times then we will declare with 99% confidence
that P (6) > 1/6.

Develop the Formula From Scratch: Suppose that H0 = “p = p0” is true. Then from the
CLT we know that p̂ is approximately N(p0, p0(1− p0)/n). Hence

p̂− p0√
p0(1− p0)/n

≈ N(0, 1).



To test H0 = “p = p0” against H1 = “p > p0” we look for values of p̂ that are significantly
larger than p0:

α = P (Z > zα)

≈ P

(
p̂− p0√

p0(1− p0)/n
> zα

)

= P

(
p̂ > p0 + zα ·

√
p0(1− p0)

n

)
.

If such a significantly large value of p̂ occurs then we reject H0 in favor of H1.

4. Confidence Intervals for a Proportion. Let p be the proportion of Americans who are
left-handed. In order to estimate p, we randomly selected n = 1000 Americans and we found
that Y = 125 of them are left-handed. Use this information to compute two-sided, symmetric
(1− α)100% confidence intervals for p when α = 5%, 2.5% and 1%.

We can develop the answer from scratch or just quote a formula.

Quote a Formula: The sample proportion is p̂ = Y/n = 125/1000 = 12.5%. We have the
following approximate, two-sided, symmetric (1− α)100% confidence interval for p:

p = p̂± zα/2 ·
√
p̂(1− p̂)

n

p = 12.5%± zα/2 ·
√

(0.125)(1− 0.125)

1000
p = 12.5%± zα/2 · 0.01045825033

Substituting α = 5%, 2.5% and 1% gives the following confidence intervals, respectively:

p = 12.5%± 2.05%,

p = 12.5%± 2.34%,

p = 12.5%± 2.69%.

Develop the Formula From Scratch: We know from the CLT that p̂ is approximately
N(p, p(1− p)/n), and hence

p̂− p√
p(1− p)/n

≈ N(0, 1).

Then we use some algebra to obtain

1− α = P (−zα/2 < Z < zα/2)

≈ P

(
−zα/2 <

p̂− p√
p(1− p)/n

< zα/2

)
...

= P

(
p̂− zα/2 ·

√
p(1− p)

n
< p < p̂− zα/2 ·

√
p(1− p)

n

)



Since the error bounds involve the unknown p we replace it by p̂ in the expression
√
p(1− p)/n.

This is mathematically irresponsible but hopefully it’s not too bad for large n. A computer
would use a more accurate formula that is harder to derive and harder to memorize. If the
sample is drawn from a population of size N then we get even more accuracy by using the
variance of a hypergeometric distribution

Var(p̂) =
p(1− p)

n
· N − n
N − 1

.

In our case, N = 329.5 million and n = 1000, so (N − n)/(N − 1) = 0.9999969681.

5. Sample Variance. Consider an iid sample X1, . . . , Xn with unknown mean µ and un-
known variance σ2. In order to estimate σ2 we define the sample variance as follows:

S2 =
1

n− 1

n∑
i=1

(
Xi −X

)2
,

where X = (
∑n

i=1Xi)/n is the usual sample mean.

(a) Show that
∑n

i=1

(
Xi −X

)2
=
(∑n

i=1X
2
i

)
− nX2

. [Hint: nX =
∑n

i=1Xi.]

(b) Show that E[X2
i ] = µ2 + σ2 and E[X

2
] = µ2 + σ2/n. [Hint: By definition we have

E[Xi] = µ and Var(Xi) = σ2, which implies that E[X] = µ and Var(X) = σ2/n.]
(c) Combine (a) and (b) to show that E[S2] = σ2. This is why the definition of S2 has

n− 1 in the denominator instead of n.

(a): First we note that

(Xi −X)2 = X2
i − 2XXi +X

2
.

Then we sum over i to obtain

n∑
i=1

(Xi −X)2 =
n∑
i=1

(X2
i − 2XXi +X

2
)

=
n∑
i=1

X2
i − 2X

n∑
i=1

Xi + nX
2

=
n∑
i=1

X2
i − 2nX

2
+ nX

2

=

n∑
i=1

X2
i − nX

2
.

(b): For any random variable Y we have Var(Y ) = E[Y 2] − E[Y ]2 and hence E[Y 2] =
E[Y ]2 + Var(Y ). Since E[Xi] = µ and Var(Xi) = σ2 we get

E[X2
i ] = E[Xi]

2 + Var(Xi) = µ2 + σ2.

And since E[X] = µ and Var(X) = σ2/n we get

E[X
2
] = E[X]2 + Var(X) = µ2 + σ2/n.



(c): Combining (a) and (b) gives

E[S2] = E

[
1

n− 1

∑
i=1

(Xi −X)2

]

=
1

n− 1
· E

[
n∑
i=1

(Xi −X)2

]

=
1

n− 1
· E

[
n∑
i=1

X2
i − nX

2

]

=
1

n− 1
·

(
n∑
i=1

E[X2
i ]− n · E[X

2
]

)

=
1

n− 1
·
(
n · (��µ

2 + σ2)− n · (��µ
2 + σ2/n)

)
=

1

n− 1
·
(
nσ2 − σ2

)
=

1

n− 1
· (n− 1)σ2 = σ2.

6. A Small Sample. The label weight of a Cadbury Creme Egg is 1.2oz. In order to test
this you weighed 10 eggs and obtained the following values (in ounces):

1.12 1.01 1.04 1.10 1.00 1.04 1.28 1.17 1.19 1.24

Let X represent the underlying distribution with unknown mean µ = E[X]. For simplicity we
assume that X is normal.

(a) Compute the sample mean X and the sample variance S2.
(b) Look up the t-tail probabilities t5%(9) and t2.5%(9).
(c) Test the hypothesis H0 = “µ = 1.2” against the one-sided alternative H1 = “µ < 1.2”

at the 5% level of significance.
(d) Compute a two-sided symmetric 95% confidence interval for the unknown µ.

(a): My computer gives

X = 1.119 and S2 = 0.009677.

(b): The t-table says
t5%(9) = 1.833 and t2.5%(9) = 2.262.

(c): We just quote a formula. When testing H0 = “µ = µ0” against H1 = “µ < µ0”. The
rejection region is

X < µ0 − tα(n− 1) ·
√
S2

n
.

In our case we have n = 10, µ0 = 1.2 and α = 5%. Plugging in the values of X, S2 and t5%(9)
from parts (a) and (b) gives

1.119 < 1.2− 1.833 ·
√

0.009677

10
1.119 < 1.143.



Since this inequality is true, we reject “µ = 1.2” in favor of “µ < 1.2”.

Remark: Outside the classroom, you would just plug your data into a computer and press a
button. Here’s what my computer says:

The “p-value” is the smallest value of α such that H0 would be rejected. It is more useful to
quote this than just saying that H0 was rejected at α = 5%.

(d): We just quote a formula. We have the following two-sided, symmetric (1 − α)100%
confidence interval for µ:

µ = X ± tα/2(n− 1) ·
√
S2

n

µ = 1.119± tα/2(9) ·
√

0.009677

10
.

In our case we have α/2 = 2.5% and t2.5%(9) = 2.262. Plugging this in gives

µ = 1.119± 0.0704,

or
1.049 < µ < 1.1894.

In words: We are 95% confident that the true value of µ is between 1.049 and 1.1894.

How to Develop the Formulas From Scratch: We start with Gosset’s definition of the
random variable Tn−1, which says that

X − µ√
S2/n

∼ Tn−1.

Then we use algebra as in Problems 3 and 4.


