1. Rounding Error. Your friend has a list of ten real numbers, whose values are unknown to you: $x_{1}, \ldots, x_{10} \in \mathbb{R}$. Your friend rounds each number to the nearest integer and sends you the results: $X_{1}, X_{2}, \ldots, X_{10} \in \mathbb{Z}$. We will assume that $X_{i}=x_{i}+U_{i}$, where each U_{i} is a uniform random variable on the interval $[-1 / 2,1 / 2]$.
(a) Compute $E\left[U_{i}\right]$ and $\operatorname{Var}\left(U_{i}\right)$.
(b) Consider the sum of the rounded numbers $X=X_{1}+\cdots+X_{10}$ and the sum of the unrounded numbers $x=x_{1}+\cdots+x_{10}$. Prove that $E[X]=x$.
(c) Assuming that the random variables U_{i} are independent, use the CLT to estimate the probability that $|X-x|>1 / 2$. [Hint: The CLT says that $X-x=U_{1}+\cdots+U_{10}$ is approximately normal. You just need to compute $E[X-x]$ and $\operatorname{Var}(X-x)$.]
(a): The density of U_{i} is given by

$$
f(x)= \begin{cases}1 & -1 / 2<x<1 / 2 \\ 0 & \text { otherwise }\end{cases}
$$

Hence

$$
E\left[U_{i}\right]=\int_{-1 / 2}^{1 / 2} x \cdot 1 d x=0 \quad \text { and } \quad \operatorname{Var}\left(U_{i}\right)=E\left[U_{i}^{2}\right]-0^{2}=\int_{-1 / 2}^{1 / 2} x^{2} \cdot 1 d x=1 / 12 .
$$

(b): Since $X_{i}=x_{i}+U_{i}$ and since x_{i} is constant we have

$$
E\left[X_{i}\right]=E\left[x_{i}+U_{i}\right]=x_{i}+E\left[U_{i}\right]=x_{i}+0=x_{i} .
$$

Then adding these up gives

$$
\begin{aligned}
E[X] & =E\left[X_{1}+X_{2}+\cdots+X_{10}\right] \\
& =E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{10}\right] \\
& =x_{1}+x_{2}+\cdots+x_{10} \\
& =x
\end{aligned}
$$

(c): Note that $X-x=U_{1}+U_{2}+\cdots+U_{10}$ is a sum of independent and identically distributed random variables. Presumably 10 is a large enough number that this sum is approximately normal. The mean is ${ }^{1}$

$$
E[X-x]=E\left[U_{1}\right]+E\left[U_{2}\right]+\cdots+E\left[U_{10}\right]=0+0+\cdots+0=0,
$$

and the variance is

$$
\begin{aligned}
\operatorname{Var}(X-x) & =\operatorname{Var}\left(U_{1}\right)+\operatorname{Var}\left(U_{2}\right)+\cdots+\operatorname{Var}\left(U_{10}\right) \\
& =1 / 12+1 / 12+\cdots+1 / 12 \\
& =10 / 12 .
\end{aligned}
$$

[^0]It follows that $X-x$ is approximately $N(0,10 / 12)$ and hence $Z=(X-x) / \sqrt{10 / 12}$ is approximately $N(0,1)$. Therefore we have

$$
\begin{aligned}
P(|X-x|>1 / 2) & =P(X-x<-1 / 2)+P(X-x>1 / 2) \\
& =P\left(\frac{X-x}{\sqrt{10 / 12}}<\frac{-1 / 2}{\sqrt{10 / 12}}\right)+P\left(\frac{X-x}{\sqrt{10 / 12}}>\frac{1 / 2}{\sqrt{10 / 12}}\right) \\
& \approx P(Z<-0.55)+P(Z>0.55) \\
& =\Phi(-0.55)+(1-\Phi(0.55)) \\
& =(1-\Phi(0.55))+(1-\Phi(0.55)) \\
& =2(1-\Phi(0.55)) \\
& =2(1-0.7088) \\
& =58.24 \% .
\end{aligned}
$$

My computer gives the exact answer 58.904%, so this approximation is pretty good.

Remark: Note that the real number x rounds to the integer X if and only if $|X-x| \leq 1 / 2$. Therefore $P(|X-x|>1 / 2)$ is the probability that x does not round to X. In other words, there is a 58.9% chance that the following two procedures yield different results:

- Round each of 10 numbers to the nearest integer and then add them.
- Add 10 numbers and then round the sum to the nearest integer.

2. Tail Probabilities. Consider a standard normal variable $Z \sim N(0,1)$. Solve for a.
(a) $P(Z>a)=93 \%$
(b) $P(Z<a)=35 \%$
(c) $P(|Z|>a)=2 \%$
(d) $P(|Z|<a)=80 \%$
(a): We have $\Phi(a)=7 \%$. Since $a<0$ this is not in our table, so we use symmetry to write

$$
\begin{aligned}
\Phi(-a) & =1-\Phi(a) \\
\Phi(-a) & =93 \% \\
-a & \approx 1.475 \\
a & \approx-1.475 .
\end{aligned}
$$

Here is a picture:

(b): We have $\Phi(a)=35 \%$. Since $a<0$ this is not in our table, so we use symmetry:

$$
\begin{aligned}
\Phi(-a) & =1-\Phi(a) \\
\Phi(-a) & =65 \% \\
-a & \approx 0.385 \\
a & \approx-0.385 .
\end{aligned}
$$

Here is a picture:

(c): We can rewrite $P(|Z|>a)=2 \%$ as

$$
\begin{aligned}
P(Z<-a)+P(Z>a) & =2 \% \\
\Phi(-a)+(1-\Phi(a)) & =2 \% \\
(1-\Phi(a))+(1-\Phi(a)) & =2 \% \\
2(1-\Phi(a)) & =2 \% \\
\Phi(a) & =99 \% \\
a & \approx 2.325 .
\end{aligned}
$$

Here is a picture:

(d): We can rewrite $P(|Z|<a)=80 \%$ as

$$
\begin{aligned}
P(-a<Z<a) & =80 \% \\
\Phi(a)-\Phi(-a) & =80 \% \\
\Phi(a)-(1-\Phi(a)) & =80 \% \\
2 \Phi(a)-1 & =80 \% \\
\Phi(a) & =90 \% \\
a & \approx 1.28 .
\end{aligned}
$$

Here is a picture:

Remark: I wrote out the solutions using algebra, but it's easier to work from a picture.
3. A Bernoulli Hypothesis Test. A six-sided die has sides labeled $\{1,2,3,4,5,6\}$. Let p be the probability of getting a 6 . Before performing any experiments we will assume that $H_{0}=$ " $p=1 / 6$ " is true. Now suppose that you roll the die 600 times and let Y be the number of times you get 6 . Which values of Y would cause you to reject H_{0} in favor of $H_{1}=" p>1 / 6$ " at the 99% level of confidence? That is, what is the rejection region?

We can develop the answer from scratch or we can just quote a formula.

Quote a Formula: Consider the sample proportion $\hat{p}=Y / n$. When testing $H_{0}=$ " $p=p_{0}$ " against $H_{1}=$ " $p>p_{0}$ " at confidence level $1-\alpha$, the rejection region is

$$
\hat{p}>p_{0}+z_{\alpha} \cdot \sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}
$$

In our case we have $n=600, p_{0}=1 / 6$ and $1-\alpha=99 \%$ so the rejection region is

$$
\begin{aligned}
\hat{p} & >\frac{1}{6}+z_{1 \%} \cdot \sqrt{\frac{(1 / 6)(5 / 6)}{600}} \\
\frac{Y}{600} & >\frac{1}{6}>(2.325) \cdot \sqrt{\frac{(1 / 6)(5 / 6)}{600}} \\
\frac{Y}{600} & >0.202 \\
Y & >121.2 .
\end{aligned}
$$

Thus we will reject $H_{0}=$ " $p=1 / 6$ " for $H_{1}=$ " $p>1 / 6$ " when $Y \geq 122$. In other words, if we roll a die 600 times and get a 6 at least 122 times then we will declare with 99% confidence that $P(6)>1 / 6$.

Develop the Formula From Scratch: Suppose that $H_{0}=$ " $p=p_{0}$ " is true. Then from the CLT we know that \hat{p} is approximately $N\left(p_{0}, p_{0}\left(1-p_{0}\right) / n\right)$. Hence

$$
\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}} \approx N(0,1) .
$$

To test $H_{0}=" p=p_{0} "$ against $H_{1}=" p>p_{0}$ " we look for values of \hat{p} that are significantly larger than p_{0} :

$$
\begin{aligned}
\alpha & =P\left(Z>z_{\alpha}\right) \\
& \approx P\left(\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}>z_{\alpha}\right) \\
& =P\left(\hat{p}>p_{0}+z_{\alpha} \cdot \sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}\right)
\end{aligned}
$$

If such a significantly large value of \hat{p} occurs then we reject H_{0} in favor of H_{1}.
4. Confidence Intervals for a Proportion. Let p be the proportion of Americans who are left-handed. In order to estimate p, we randomly selected $n=1000$ Americans and we found that $Y=125$ of them are left-handed. Use this information to compute two-sided, symmetric $(1-\alpha) 100 \%$ confidence intervals for p when $\alpha=5 \%, 2.5 \%$ and 1%.

We can develop the answer from scratch or just quote a formula.
Quote a Formula: The sample proportion is $\hat{p}=Y / n=125 / 1000=12.5 \%$. We have the following approximate, two-sided, symmetric $(1-\alpha) 100 \%$ confidence interval for p :

$$
\begin{aligned}
& p=\hat{p} \pm z_{\alpha / 2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\
& p=12.5 \% \pm z_{\alpha / 2} \cdot \sqrt{\frac{(0.125)(1-0.125)}{1000}} \\
& p=12.5 \% \pm z_{\alpha / 2} \cdot 0.01045825033
\end{aligned}
$$

Substituting $\alpha=5 \%, 2.5 \%$ and 1% gives the following confidence intervals, respectively:

$$
\begin{aligned}
& p=12.5 \% \pm 2.05 \% \\
& p=12.5 \% \pm 2.34 \% \\
& p=12.5 \% \pm 2.69 \%
\end{aligned}
$$

Develop the Formula From Scratch: We know from the CLT that \hat{p} is approximately $N(p, p(1-p) / n)$, and hence

$$
\frac{\hat{p}-p}{\sqrt{p(1-p) / n}} \approx N(0,1)
$$

Then we use some algebra to obtain

$$
\begin{aligned}
1-\alpha & =P\left(-z_{\alpha / 2}<Z<z_{\alpha / 2}\right) \\
& \approx P\left(-z_{\alpha / 2}<\frac{\hat{p}-p}{\sqrt{p(1-p) / n}}<z_{\alpha / 2}\right) \\
& \vdots \\
& =P\left(\hat{p}-z_{\alpha / 2} \cdot \sqrt{\frac{p(1-p)}{n}}<p<\hat{p}-z_{\alpha / 2} \cdot \sqrt{\frac{p(1-p)}{n}}\right)
\end{aligned}
$$

Since the error bounds involve the unknown p we replace it by \hat{p} in the expression $\sqrt{p(1-p) / n}$. This is mathematically irresponsible but hopefully it's not too bad for large n. A computer would use a more accurate formula that is harder to derive and harder to memorize. If the sample is drawn from a population of size N then we get even more accuracy by using the variance of a hypergeometric distribution

$$
\operatorname{Var}(\hat{p})=\frac{p(1-p)}{n} \cdot \frac{N-n}{N-1} .
$$

In our case, $N=329.5$ million and $n=1000$, so $(N-n) /(N-1)=0.9999969681$.
5. Sample Variance. Consider an iid sample X_{1}, \ldots, X_{n} with unknown mean μ and unknown variance σ^{2}. In order to estimate σ^{2} we define the sample variance as follows:

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

where $\bar{X}=\left(\sum_{i=1}^{n} X_{i}\right) / n$ is the usual sample mean.
(a) Show that $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\left(\sum_{i=1}^{n} X_{i}^{2}\right)-n \bar{X}^{2}$. [Hint: $n \bar{X}=\sum_{i=1}^{n} X_{i}$.]
(b) Show that $E\left[X_{i}^{2}\right]=\mu^{2}+\sigma^{2}$ and $E\left[\bar{X}^{2}\right]=\mu^{2}+\sigma^{2} / n$. [Hint: By definition we have $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, which implies that $E[\bar{X}]=\mu$ and $\operatorname{Var}(\bar{X})=\sigma^{2} / n$.
(c) Combine (a) and (b) to show that $E\left[S^{2}\right]=\sigma^{2}$. This is why the definition of S^{2} has $n-1$ in the denominator instead of n.
(a): First we note that

$$
\left(X_{i}-\bar{X}\right)^{2}=X_{i}^{2}-2 \bar{X} X_{i}+\bar{X}^{2}
$$

Then we sum over i to obtain

$$
\begin{aligned}
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} & =\sum_{i=1}^{n}\left(X_{i}^{2}-2 \bar{X} X_{i}+\bar{X}^{2}\right) \\
& =\sum_{i=1}^{n} X_{i}^{2}-2 \bar{X} \sum_{i=1}^{n} X_{i}+n \bar{X}^{2} \\
& =\sum_{i=1}^{n} X_{i}^{2}-2 n \bar{X}^{2}+n \bar{X}^{2} \\
& =\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}
\end{aligned}
$$

(b): For any random variable Y we have $\operatorname{Var}(Y)=E\left[Y^{2}\right]-E[Y]^{2}$ and hence $E\left[Y^{2}\right]=$ $E[Y]^{2}+\operatorname{Var}(Y)$. Since $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ we get

$$
E\left[X_{i}^{2}\right]=E\left[X_{i}\right]^{2}+\operatorname{Var}\left(X_{i}\right)=\mu^{2}+\sigma^{2} .
$$

And since $E[\bar{X}]=\mu$ and $\operatorname{Var}(\bar{X})=\sigma^{2} / n$ we get

$$
E\left[\bar{X}^{2}\right]=E[\bar{X}]^{2}+\operatorname{Var}(\bar{X})=\mu^{2}+\sigma^{2} / n .
$$

(c): Combining (a) and (b) gives

$$
\begin{aligned}
E\left[S^{2}\right] & =E\left[\frac{1}{n-1} \sum_{i=1}\left(X_{i}-\bar{X}\right)^{2}\right] \\
& =\frac{1}{n-1} \cdot E\left[\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right] \\
& =\frac{1}{n-1} \cdot E\left[\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}\right] \\
& =\frac{1}{n-1} \cdot\left(\sum_{i=1}^{n} E\left[X_{i}^{2}\right]-n \cdot E\left[\bar{X}^{2}\right]\right) \\
& =\frac{1}{n-1} \cdot\left(n \cdot\left(\not \mu^{2}+\sigma^{2}\right)-n \cdot\left(\not \mu^{2}+\sigma^{2} / n\right)\right) \\
& =\frac{1}{n-1} \cdot\left(n \sigma^{2}-\sigma^{2}\right) \\
& =\frac{1}{n-1} \cdot(n-1) \sigma^{2}=\sigma^{2} .
\end{aligned}
$$

6. A Small Sample. The label weight of a Cadbury Creme Egg is 1.2 oz. In order to test this you weighed 10 eggs and obtained the following values (in ounces):

1.12	1.01	1.04	1.10	1.00	1.04	1.28	1.17	1.19	1.24

Let X represent the underlying distribution with unknown mean $\mu=E[X]$. For simplicity we assume that X is normal.
(a) Compute the sample mean \bar{X} and the sample variance S^{2}.
(b) Look up the t-tail probabilities $t_{5 \%}(9)$ and $t_{2.5 \%}(9)$.
(c) Test the hypothesis $H_{0}=" \mu=1.2$ " against the one-sided alternative $H_{1}=" ~ \mu<1.2$ " at the 5% level of significance.
(d) Compute a two-sided symmetric 95% confidence interval for the unknown μ.
(a): My computer gives

$$
\bar{X}=1.119 \quad \text { and } \quad S^{2}=0.009677
$$

(b): The t-table says

$$
t_{5 \%}(9)=1.833 \quad \text { and } \quad t_{2.5 \%}(9)=2.262
$$

(c): We just quote a formula. When testing $H_{0}=$ " $\mu=\mu_{0}$ " against $H_{1}=" \mu<\mu_{0} "$. The rejection region is

$$
\bar{X}<\mu_{0}-t_{\alpha}(n-1) \cdot \sqrt{\frac{S^{2}}{n}}
$$

In our case we have $n=10, \mu_{0}=1.2$ and $\alpha=5 \%$. Plugging in the values of \bar{X}, S^{2} and $t_{5 \%}(9)$ from parts (a) and (b) gives

$$
\begin{aligned}
& 1.119<1.2-1.833 \cdot \sqrt{\frac{0.009677}{10}} \\
& 1.119<1.143 .
\end{aligned}
$$

Since this inequality is true, we reject " $\mu=1.2$ " in favor of " $\mu<1.2$ ".
Remark: Outside the classroom, you would just plug your data into a computer and press a button. Here's what my computer says:

$\left[\begin{array}{r} >X:=[1.12,1.01,1.04,1.10,1.0,1.04,1.28,1.17,1.19,1.24] ; \\ X:=[1.12,1.01,1.04,1.10,1.0,1.04,1.28,1.17,1.19,1.24] \tag{3} \end{array}\right.$							
Standard T-Test on One Sample							
Null Hypothesi		Sample drawn	m population	mean greate	1.2		
Alternative Hyp	esis:	Sample draw	population	ean less			
Sample Size	Sample Mean	Sample Standard Deviation	Distribution	Computed Statistic	Computed pvalue	Confidence Interval	
10.	1.11900	0.0983700	StudentT(9)	-2.60389	0.0142778	Float ($-\infty$) ..1.17602	
Result:		Rejected: This statistical test provides evidence that the null hypothesis is false.					

The " p-value" is the smallest value of α such that H_{0} would be rejected. It is more useful to quote this than just saying that H_{0} was rejected at $\alpha=5 \%$.
(d): We just quote a formula. We have the following two-sided, symmetric ($1-\alpha$) 100% confidence interval for μ :

$$
\begin{aligned}
& \mu=\bar{X} \pm t_{\alpha / 2}(n-1) \cdot \sqrt{\frac{S^{2}}{n}} \\
& \mu=1.119 \pm t_{\alpha / 2}(9) \cdot \sqrt{\frac{0.009677}{10}}
\end{aligned}
$$

In our case we have $\alpha / 2=2.5 \%$ and $t_{2.5 \%}(9)=2.262$. Plugging this in gives

$$
\mu=1.119 \pm 0.0704
$$

or

$$
1.049<\mu<1.1894
$$

In words: We are 95% confident that the true value of μ is between 1.049 and 1.1894.

How to Develop the Formulas From Scratch: We start with Gosset's definition of the random variable T_{n-1}, which says that

$$
\frac{\bar{X}-\mu}{\sqrt{S^{2} / n}} \sim T_{n-1} .
$$

Then we use algebra as in Problems 3 and 4.

[^0]: ${ }^{1}$ We can also use part (b) to get $E[X-x]=E[X]-x=x-x=0$.

