Math 224 Spring 2022
Homework 6 Drew Armstrong

1. Rounding Error. Your friend has a list of ten real numbers, whose values are unknown
to you: x1,...,710 € R. Your friend rounds each number to the nearest integer and sends
you the results: X7, Xo,..., X190 € Z. We will assume that X; = x; + U;, where each U, is a
uniform random variable on the interval [-1/2,1/2].

(a) Compute E[U;] and Var(U;).

(b) Consider the sum of the rounded numbers X = X; + --- + Xy and the sum of the
unrounded numbers x = 1 + - - - + x19. Prove that E[X] = x.

(c) Assuming that the random variables U; are independent, use the CLT to estimate the
probability that | X — z| > 1/2. [Hint: The CLT says that X —x = Uy + --- + Uyg is
approximately normal. You just need to compute E[X — z]| and Var(X — z).]

(a): The density of U; is given by
1 —1/2<2<1/2,
fla) = { / /

0 otherwise.

Hence
1/2 1/2
E[U;] = / z-1der=0 and Var(U;) = E[U}—-0%= / 2 1dr=1/12.
—1/2 —1/2

(b): Since X; = x; + U; and since z; is constant we have
E[X;|=Flz; + U =x; + E[U;] = 2; + 0 = z;.
Then adding these up gives
E[X] = E[X1 4+ X2 + -+ - + X10]
= E[Xi] + E[Xo] + - + E[Xj0]

=a1+ a2+ + 10

= .

(c): Note that X —z = Uy +Us+- - -+ Uy is a sum of independent and identically distributed
random variables. Presumably 10 is a large enough number that this sum is approximately
normal. The mean idl]

E[X —z] = E|[Ui]+ E[Us) 4 -+ E[U;g] =0+0+---+0=0,
and the variance is

Var(X — ) = Var(U;) + Var(Usz) + - - - + Var(Uyo)
= 1/124+1/12+ -+ 1/12
= 10/12.

1We can also use part (b) to get E[X — 2] = E[X] -z =2 —z = 0.



It follows that X — x is approximately N(0,10/12) and hence Z = (X — z)/4/10/12 is ap-
proximately N (0, 1). Therefore we have

P(X —2| >1/2) = P(X —x < —1/2) + P(X — 2 > 1/2)

(X—x —1/2)+P<X—m 1/2 )
V10/12  /10/12 V/10/12 © /10/12
~ P(Z < —0.55) + P(Z > 0.55)

®(—0.55) + (1 — ®(0.55))

= (1= ®(0.55)) + (1 — ©(0.55))

=2(1 - ®(0.55))
= 2(1 — 0.7088)
= 58.24%.

My computer gives the exact answer 58.904%, so this approximation is pretty good.

Remark: Note that the real number x rounds to the integer X if and only if | X — x| < 1/2.
Therefore P(|X — x| > 1/2) is the probability that « does not round to X. In other words,
there is a 58.9% chance that the following two procedures yield different results:

e Round each of 10 numbers to the nearest integer and then add them.
e Add 10 numbers and then round the sum to the nearest integer.

2. Tail Probabilities. Consider a standard normal variable Z ~ N(0,1). Solve for a.
(a) P(Z > a)=93%

(b) P(Z < a) = 35%
(c) P(|Z] > a) =2%
(d) P(|Z] < a) = 80%

(a): We have ®(a) = 7%. Since a < 0 this is not in our table, so we use symmetry to write
O(—a)=1— ®(a)
&(—a) = 93%
—a ~ 1.475
a~ —1.475.

Here is a picture:

1.475



(b): We have ®(a) = 35%. Since a < 0 this is not in our table, so we use symmetry:
®(—a)=1— ®(a)
®(—a) = 65%
—a ~ 0.385
a ~ —0.385.

Here is a picture:

-0.385

(c): We can rewrite P(|Z| > a) = 2% as

P(Z < —a) + P(Z > a) = 2%
D(—a)+ (1 —P(a)) =2%
(1—=®(a))+ (1 —P(a)) =2%
2(1—®(a)) =2%
®(a) = 99%
a~ 2.325
Here is a picture:
2325 2.325

(d): We can rewrite P(|Z] < a) = 80% as
P(—a< Z < a)=80%
®(a) — ®(—a) = 80%

B(a) — (1 — ®(a)) = 80%
20(a) — 1 = 80%
o(a) = 90%

a~1.28.

Here is a picture:



128 1.28

Remark: I wrote out the solutions using algebra, but it’s easier to work from a picture.

3. A Bernoulli Hypothesis Test. A six-sided die has sides labeled {1,2,3,4,5,6}. Let
p be the probability of getting a 6. Before performing any experiments we will assume that
Hy = “p=1/6" is true. Now suppose that you roll the die 600 times and let Y be the number
of times you get 6. Which values of Y would cause you to reject Hy in favor of H; = “p > 1/6”
at the 99% level of confidence? That is, what is the rejection region?

We can develop the answer from scratch or we can just quote a formula.

Quote a Formula: Consider the sample proportion p = Y/n. When testing Hy = “p = po”
against Hy = “p > po” at confidence level 1 — «, the rejection region is

Po(1 — po)
n

]3 >po+ Z2a-
In our case we have n = 600, pop = 1/6 and 1 — a = 99% so the rejection region is

oo 1 (1/6)(5/6)

P> =+ 219

6 600

v o1 (1/6)(5/6)
> 2> (2.325) ) A2
600 ~ 6~ (23%) 600
Y
—_ > 0.202
cop > 0-20

Y > 121.2.

Thus we will reject Hy = “p=1/6" for H; = “p > 1/6” when Y > 122. In other words, if we
roll a die 600 times and get a 6 at least 122 times then we will declare with 99% confidence
that P(6) > 1/6.

Develop the Formula From Scratch: Suppose that Hy = “p = pg” is true. Then from the
CLT we know that p is approximately N (po, po(1 — po)/n). Hence

P —Po

—po(l =7 ~ N(0,1).



To test Hy = “p = po” against H; = “p > po” we look for values of p that are significantly
larger than py:

a=P(Z > z,)

Po(1l —po)/n
po(l —m)) '

:P<]§>p0+za'
n

If such a significantly large value of p occurs then we reject Hy in favor of Hj.

4. Confidence Intervals for a Proportion. Let p be the proportion of Americans who are
left-handed. In order to estimate p, we randomly selected n = 1000 Americans and we found
that Y = 125 of them are left-handed. Use this information to compute two-sided, symmetric
(1 — «@)100% confidence intervals for p when o = 5%, 2.5% and 1%.

We can develop the answer from scratch or just quote a formula.

Quote a Formula: The sample proportion is p = Y/n = 125/1000 = 12.5%. We have the
following approximate, two-sided, symmetric (1 — «)100% confidence interval for p:

p(1—p)

(0.125)(1 — 0.125)
p = 125% + Za/g . \/ 1000

p = 12.5% + 2,5 - 0.01045825033

p:ﬁiza/Q'

Substituting o = 5%, 2.5% and 1% gives the following confidence intervals, respectively:

p=12.5% + 2.05%,
p=12.5% =+ 2.34%,
p=12.5% + 2.69%.

Develop the Formula From Scratch: We know from the CLT that p is approximately
N(p,p(1 —p)/n), and hence

p—p
V(1 =p)/n

Then we use some algebra to obtain

~ N(0,1).

l—Oé:P(—Za/z < Z< Za/?)

pP—DP
RP| 240 < —————ms< 2o
</ p( - p)/n />

R 1-— R 1-—
:P<p_za/2.4/p<nm<p<p_za/2.,/p<np>>



Since the error bounds involve the unknown p we replace it by p in the expression /p(1 — p)/n.
This is mathematically irresponsible but hopefully it’s not too bad for large n. A computer
would use a more accurate formula that is harder to derive and harder to memorize. If the
sample is drawn from a population of size N then we get even more accuracy by using the
variance of a hypergeometric distribution

pl—p) N-n
n N-—-1
In our case, N = 329.5 million and n = 1000, so (N —n)/(N — 1) = 0.9999969681.

Var(p) =

5. Sample Variance. Consider an iid sample Xi,..., X, with unknown mean g and un-
known variance 2. In order to estimate o we define the sample variance as follows:

% =

1 -\ 2
n—1 < (Xi_X) ’

n
=1

where X = (3°1 | X;)/n is the usual sample mean.
(a) Show that Y0, (X; — X)* = (X1, X2) —nX". [Hint: nX = 37, X;]
(b) Show that E[X?] = u? + o2 and E[YQ] = p? + 0%/n. [Hint: By definition we have
E[X;] = p and Var(X;) = 02, which implies that E[X] = p and Var(X) = 02 /n.]
(c) Combine (a) and (b) to show that E[S?] = 2. This is why the definition of S? has
n — 1 in the denominator instead of n.

(a): First we note that
(X; - X)2= X2 - 2XX; + X.

Then we sum over ¢ to obtain

n n
SN -X)?2 =Y (X2 -2XX; + X))
=1 i=1
n n 9
— Y X2 9X S X 40X
=1 =1

- 2 2
= Z X? —2nX +nX

=1

n
= ZXZQ X"
i=1

(b): For any random variable Y we have Var(Y) = E[Y?] — E[Y]? and hence E[Y?] =
E[Y]? 4+ Var(Y). Since E[X;] = p and Var(X;) = o2 we get

E[X?] = BE[X)]* + Var(X;) = p* + o°.
And since E[X] = p and Var(X) = 02 /n we get

E[X?] = B[X)? + Var(X) = 1 + 02/n.



(c): Combining (a) and (b) gives

Bls =8| (&—X)?]

=1

:nil‘E Zn:(Xi—X)QI
=1

:nil E|Y x2-nX’
=1

o (n E[X?] —n E[X2]>
i=1

=L (o) 4 )

1
= 1 (n0* )
:nil (n—1)0? = o*

6. A Small Sample. The label weight of a Cadbury Creme Egg is 1.20z. In order to test
this you weighed 10 eggs and obtained the following values (in ounces):

1.1211.0111.04|1.10|1.00|1.04|1.28|1.17|1.19|1.24

Let X represent the underlying distribution with unknown mean p = E[X]. For simplicity we
assume that X is normal.
(a) Compute the sample mean X and the sample variance S2.
(b) Look up the t-tail probabilities t5e,(9) and t9 50 (9).
(c) Test the hypothesis Hy = “u = 1.2” against the one-sided alternative Hy = “up < 1.2”
at the 5% level of significance.
(d) Compute a two-sided symmetric 95% confidence interval for the unknown .

(a): My computer gives

X =1.119 and S?%=0.009677.

(b): The t-table says
tsr(9) = 1.833  and  ty50(9) = 2.262.

(c): We just quote a formula. When testing Hy = “u = po” against Hy = “u < po”. The

rejection region is
_ /52

In our case we have n = 10, o = 1.2 and o = 5%. Plugging in the values of X, S? and t5¢,(9)
from parts (a) and (b) gives
0.009677

1.11 1.2 -1. .
9 < 833 10

1.119 < 1.143.



Since this inequality is true, we reject “u = 1.2” in favor of “u < 1.2”.

Remark: Outside the classroom, you would just plug your data into a computer and press a
button. Here’s what my computer says:

> X := [1.12, 1.01, 1.04, 1.10, 1.6, 1.04, 1.28, 1.17, 1.19, 1.24];
X = [1.12, 1.01, 1.04, 1.10, 1.0, 1.04, 1.28, 1.17, 1.19, 1.24] 3)
:> Statistics[OneSampleTTest](X,1.2, confidence=0.95,alternative="1lowertail', summarize=embed):
Standard T-Test on One Sample
Null Hypothesis: Sample drawn from population with mean greater than 1.2
Alternative Hypothesis: Sample drawn from population with mean less than 1.2
Sample Size | Sample Mean Sample Distribution Computed Computed p- Confidence Interval
Standard Statistic value
Deviation
10. 1.11900 0.0983700 StudentT(9) —2.60389 0.0142778 Float( - o) ..1.17602
Result: Rejected: This statistical test provides evidence that the null hypothesis is false.

The “p-value” is the smallest value of a such that Hy would be rejected. It is more useful to
quote this than just saying that Hy was rejected at a = 5%.

(d): We just quote a formula. We have the following two-sided, symmetric (1 — «)100%
confidence interval for p:
_ 52
p=X=Etypon—1)- \V o

/0.009677

In our case we have a/2 = 2.5% and t555(9) = 2.262. Plugging this in gives
1= 1.119 + 0.0704,

or
1.049 < p < 1.1894.

In words: We are 95% confident that the true value of u is between 1.049 and 1.1894.

How to Develop the Formulas From Scratch: We start with Gosset’s definition of the
random variable T}, 1, which says that

S THE
\V/S?%/n

Then we use algebra as in Problems 3 and 4.

Th-1.



