1. Uniform Random Variable. Let U be the uniform random variable on the interval $[2,6]$. Compute the following:

$$
P(3<U<4), \quad P(3<U<7), \quad \mu=E[U], \quad \sigma^{2}=\operatorname{Var}(U), \quad P(\mu-\sigma<U<\mu+\sigma) .
$$

Recall that the density of U is

$$
f_{U}(x)= \begin{cases}1 / 4 & 2 \leq x \leq 6 \\ 0 & \text { otherwise }\end{cases}
$$

The idea is that the density is constant on the interval $[2,6]$. We choose $1 / 4=1 /(6-2)$ so that the total area is 1 . Here is a picture:

To compute each probability we must integrate the density. First we have

$$
P(3<U<4)=\int_{3}^{4} f_{U}(x) d x=\int_{3}^{4}(1 / 4) d x=1 / 4 .
$$

We must break up the second interval because the density has a piecewise definition:

$$
P(3<U<7)=\int_{3}^{7} f_{U}(x) d x=\int_{3}^{6} 1 / 4 d x+\int_{6}^{7} 0 d x=3 / 4+0=3 / 4 .
$$

Remark: The integral of a constant is $\int_{a}^{b} c d x=c[x]_{a}^{b}=c(b-a)$. We can also view this as the area of a rectangle with base $b-a$ and height c.

The first moment is

$$
\begin{aligned}
E[U] & =\int_{-\infty}^{\infty} x \cdot f_{U}(x) d x \\
& =\int_{-\infty}^{2} 0 d x+\int_{2}^{6} x \cdot(1 / 4) d x+\int_{6}^{\infty} 0 d x . \\
& =(1 / 4)\left[x^{2} / 2\right]_{2}^{6} \\
& =(1 / 4)[36 / 2-4 / 2] \\
& =4
\end{aligned}
$$

which we could have guessed because the distribution is symmetric about 4. The second moment is

$$
\begin{aligned}
E\left[U^{2}\right] & =\int_{-\infty}^{\infty} x^{2} \cdot f_{U}(x) d x \\
& =\int_{2}^{6} x^{2}(1 / 4) d x \\
& =(1 / 4)\left[x^{3} / 3\right]_{2}^{6} \\
& =(1 / 4)[216 / 3-8 / 3] \\
& =52 / 3,
\end{aligned}
$$

and hence the variance is

$$
\operatorname{Var}(U)=E\left[U^{2}\right]-E[U]^{2}=52 / 3-(4)^{2}=4 / 3
$$

Finally, we compute the probability that U falls between $\mu-\sigma$ and $\mu+\sigma$. Since $\mu=4$ and $\sigma=\sqrt{4 / 3}$ we have

$$
\begin{aligned}
P(\mu-\sigma<U<\mu+\sigma) & =P(4-\sqrt{4 / 3}<U<4+\sqrt{4 / 3}) \\
& =\int_{4-\sqrt{4 / 3}}^{4+\sqrt{4 / 3}}(1 / 4) d x \\
& =(1 / 4)[x]_{4-\sqrt{4 / 3}}^{4+\sqrt{4 / 3}} \\
& =(1 / 4)[(7 / 2+\sqrt{3 / 4})-(7 / 2-\sqrt{3 / 4})] \\
& =(1 / 4)[2 \sqrt{4 / 3}] \\
& \approx 57.7 \% .
\end{aligned}
$$

Remark: We would have gotten 57.7% for the uniform random variable on any interval $[a, b]$. See the notes for a proof.
2. A Continuous Random Variable. Let X be a continuous random variable with the following density:

$$
f_{X}(x)= \begin{cases}c\left(1-x^{4}\right) & -1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the correct value of the constant c.
(b) Compute $\mu=E[X]$ and $\sigma^{2}=\operatorname{Var}(X)$.
(c) Compute $P(\mu-\sigma<X<\mu+\sigma)$.
(d) Draw a picture of the whole situation.
(a): The total mass of a probability density must be 1 :

$$
1=\int_{-1}^{1} c \cdot\left(1-x^{4}\right) d x=c\left[x-x^{5} / 5\right]_{-1}^{1}=c[(1-1 / 5)-(-1+1 / 5)]=c[8 / 5] .
$$

Hence we must have $c=5 / 8$.
(b): The mean is

$$
\begin{aligned}
\mu=E[X] & =\int_{-1}^{1} x \cdot(5 / 8)\left(1-x^{4}\right) d x \\
& =\int_{-1}^{1}(5 / 8)\left(x-x^{5}\right) d x \\
& =(5 / 8)\left[x^{2} / 2-x^{6} / 6\right]_{-1}^{1} \\
& =(5 / 8)[(1 / 2-1 / 6)-(1 / 2-1 / 6)] \\
& =(5 / 8)[0] \\
& =0,
\end{aligned}
$$

which we could have predicted because the distribution is symmetric about 0 . The second moment is

$$
\begin{aligned}
E\left[X^{2}\right] & =\int_{-1}^{1} x^{2} \cdot(5 / 8)\left(1-x^{4}\right) d x \\
& =\int_{-1}^{1}(5 / 8)\left(x^{2}-x^{6}\right) d x \\
& =(5 / 8)\left[x^{3} / 3-x^{7} / 7\right]_{-1}^{1} \\
& =(5 / 8)[(1 / 3-1 / 7)-(-1 / 3+1 / 7)] \\
& =(5 / 8)[5 / 12] \\
& =5 / 21,
\end{aligned}
$$

and hence the variance is

$$
\sigma^{2}=\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=5 / 21-0^{2}=5 / 21
$$

(c): Finally, we compute the probability that X falls between $\mu-\sigma$ and $\mu+\sigma$. We will use $\mu=0$ but we will leave $\sigma=\sqrt{5 / 12}$ unevaluated until the end of the calculation:

$$
\begin{aligned}
P(\mu-\sigma<X<\mu+\sigma) & =P(-\sigma<X<\sigma) \\
& =\int_{-\sigma}^{\sigma}(5 / 8)\left(1-x^{4}\right) d x \\
& =(5 / 8)\left[x-x^{5} / 5\right]_{-\sigma}^{\sigma} \\
& =(5 / 8)\left[\left(\sigma-\sigma^{5} / 5\right)-\left(-\sigma+\sigma^{5} / 5\right)\right] \\
& =(5 / 8)\left[2 \sigma-2 \sigma^{5} / 5\right] \\
& =2(5 / 8) \sigma\left[1-\sigma^{4} / 5\right] \\
& \left.=(10 / 8) \sqrt{5 / 21}\left[1-(5 / 12)^{2} / 5\right]\right] \\
& =(545 / 441) \sqrt{5 / 21} \\
& =60.3 \%
\end{aligned}
$$

Note that 60.3% is greater than 57.7% because this random variable is more concentrated near its mean than the uniform distribution in Problem 1.
(d): Here is a picture:

3. The Exponential Distribution. Fix some positive real number $\lambda>0$ and let X be a continuous random variable with exponential density:

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

(a) Verify that $\int f_{X}(x) d x=1$. [Hint: Note that $e^{-\lambda x} \rightarrow 0$ as $x \rightarrow+\infty$.]
(b) Use integration by parts to compute $E[X]$.
(a): For any constant a we have $\int e^{a x} d x=e^{a x} / a$. Hence

$$
\begin{aligned}
\int_{0}^{\infty} \lambda e^{-\lambda x} d x & =\lambda\left[e^{-\lambda x} /(-\lambda)\right]_{0}^{\infty} \\
& =\lambda\left[0+e^{-\lambda 0} / \lambda\right] \\
& =\lambda[0+1 / \lambda] \\
& =1
\end{aligned}
$$

(b): The expected value is defined by

$$
E[X]=\int_{0}^{\infty} x \cdot \lambda e^{-\lambda x} d x
$$

In order to compute this we use integration by parts. For any functions u and v, the product rule for differentials says that

$$
d(u v)=u d v+v d u .
$$

Then integrating both sides gives the formula for integration by parts:

$$
u v=\int u d v+\int v d u
$$

or equivalently

$$
\int u d v=u v+\int v d u
$$

In our case we will take $u=x$ and $d v=\lambda e^{-\lambda x} d x$ so that $d u=d x$ and $v=-e^{-\lambda x}$. Then ${ }^{11}$

$$
\begin{aligned}
E[X] & =\int_{0}^{\infty} x \cdot \lambda e^{-\lambda x} d x \\
& =\int_{0}^{\infty} u d v \\
& =[u v]_{0}^{\infty}-\int_{0}^{\infty} v d u \\
& =\left[-x \cdot e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty}-e^{-\lambda x} d x \\
& =[0-0]-\left[-e^{-\lambda} /(-\lambda)\right]_{0}^{\infty} \\
& =[0-0]-[0-1 / \lambda] \\
& =1 / \lambda .
\end{aligned}
$$

Remark: We can view the (continuous) exponential random variable as a limit of (discrete) geometric random variables. Consider a coin with $P(H)=p$ and let G be the number of coin flips until we see heads for the first time. If $P(H)=p$ then the expected number of coin flips is $E[G]=1 / p$. In this problem we can think of X as the amount of time we have to wait until a certain radioactive particle decays. This decay is controlled by a decay constant $\lambda>0$ and the expected waiting time until decay is $E[X]=1 / \lambda$. Without going into details, we can think of a radioactive particle as a "continuously flipping coin", where heads means "decay" and tails means "don't decay", so that X is the amount of time we have to wait until we see heads. This interpretation emphasizes a strange quantum property of radioactive particles: they are memoryless. If a particle has not decayed for 100 years, this does not increase the chance that it will decay tomorrow.
4. Table of Z-Scores. Let $Z \sim N(0,1)$ so that $P(Z \leq z)=\Phi(z)$. Use the attached table to compute the following probabilities:
(a) $P(Z<-0.3)$
(b) $P(0.25<Z<1.25)$
(c) $P(Z>1), P(Z>2), P(Z>3)$
(d) $P(|Z|<1), P(|Z|<2), P(|Z|<3)$

We repeatedly use the following facts:

$$
P\left(z_{1}<Z<z_{2}\right)=\Phi\left(z_{2}\right)-\Phi\left(z_{1}\right), \quad \Phi(z<Z)=1-\Phi(z), \quad P(-z)=1-\Phi(z) .
$$

(a): $P(Z<-0.3)=1-\Phi(0.3)=1-(0.6179)=30.21 \%$
(b): $P(0.25<Z<1.25)=\Phi(1.25)-\Phi(0.25)=(0.8944)-(0.5987)=\% 29.57$
(c): For each we use the formula $P(Z>z)=1-\Phi(z)$:

$$
\begin{aligned}
& \Phi(Z>1)=1-\Phi(1)=1-(0.8413)=15.85 \% \\
& \Phi(Z>2)=1-\Phi(2)=1-(0.9772)=2.28 \% \\
& \Phi(Z>3)=1-\Phi(3)=1-(0.9987)=0.13 \%
\end{aligned}
$$

[^0](d): First we note that
$$
P(|Z|<z)=P(-z<Z<z)=\Phi(z)-\Phi(-z)=\Phi(z)-[1-\Phi(z)]=2 \Phi(z)-1 .
$$

Thus we have:

$$
\begin{aligned}
& \Phi(|Z|<1)=2 \Phi(1)-1=2(0.8413)-1=68.26 \% \\
& \Phi(|Z|<2)=2 \Phi(2)-1=2(0.9772)-1=95.44 \% \\
& \Phi(|Z|<3)=2 \Phi(3)-1=2(0.9987)-1=99.74 \%
\end{aligned}
$$

In summary, the probability that a normal random variable falls within 1, 2 or 3 standard deviations of its mean is approximately $68 \%, 95 \%$ and 99.7%, respectively. Here is a picture:

Remark: Here are some useful general formulas for constants a, b with $b>0$:

$$
\begin{aligned}
& P(|Z-a|<b)=P(a-b<Z<a+b), \\
& P(|Z-a|>b)=P(Z<a-b)+P(Z>a+b) .
\end{aligned}
$$

5. The de Moivre-Laplace Theorem. Consider a coin with $p=P(H)=35 \%$. Suppose that you flip the coin 100 times and let X be the number of times you get heads.
(a) Compute $E[X]$ and $\operatorname{Var}(X)$.
(b) The de Moivre-Laplace Theorem says that X is approximately normal. Use this to estimate the probability $P(34 \leq X \leq 36)$. Don't forget to use a continuity correction.
(a): Since X has a binomial distribution with parameters $n=100$ and $p=0.35$ we know that

$$
E[X]=n p=35 \quad \text { and } \quad \operatorname{Var}(X)=n p q=22.75
$$

(b): Since $n p$ and $n q$ are both reasonably large $\sqrt{2}^{2}$ the de Moivre-Laplace theorem tells us that X is approximately normal. Let X^{\prime} be a normal random variable with the same mean and

[^1]variance: $X^{\prime} \sim N(35,22.75)$. Then we have
\[

$$
\begin{aligned}
P(34 \leq X \leq 36) & \approx P\left(33.5<X^{\prime}<36.5\right) \\
& =P\left(\frac{33.5-35}{\sqrt{22.75}}<\frac{X^{\prime}-35}{\sqrt{22.75}}<\frac{36.5-35}{\sqrt{22.75}}\right) \\
& \approx P(-0.31<Z<0.31) \\
& =\Phi(0.31)-\Phi(-0.31) \\
& =\Phi(0.31)-[1-\Phi(0.31)] \\
& =2 \Phi(0.31)-1 \\
& =2(0.6217)-1 \\
& =24.34 \% .
\end{aligned}
$$
\]

In the first step we used a continuity correction, as described by the following picture:

My computer says that the exact probability is 24.66%, so our approximation is pretty good 3^{3}
6. The Central Limit Theorem. Let $X_{1}, X_{2}, \ldots, X_{180}$ be a sequence of iid ${ }^{4}$ random variables with mean $\mu=17$ and variance $\sigma^{2}=5$. Consider the sample mean

$$
\bar{X}=\frac{1}{180}\left(X_{1}+X_{2}+\cdots+X_{180}\right) .
$$

(a) Compute $E[\bar{X}]$ and $\operatorname{Var}(\bar{X})$.
(b) The Central Limit Theorem tells us that \bar{X} is approximately normal. Use this fact together with part (a) to estimate the probability $P(\bar{X}>17.3)$.

[^2](a): We use linearity to compute the expected value:
\[

$$
\begin{aligned}
E[\bar{X}] & =E\left[\frac{1}{180}\left(X_{1}+X_{2}+\cdots+X_{180}\right)\right] \\
& =\frac{1}{180}\left(E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{180}\right]\right) \\
& =\frac{1}{180}(17+17+\cdots+17) \\
& =17 .
\end{aligned}
$$
\]

To compute the variance, we use the fact that the X_{i} are independent so that the variance of the sum is the sum of the variances. We also use the fact that $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$ for all constants a and random variables X :

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =\operatorname{Var}\left(\frac{1}{180}\left(X_{1}+X_{2}+\cdots+X_{180}\right)\right) \\
& =\left(\frac{1}{180}\right)^{2}\left(\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{180}\right)\right) \\
& =\left(\frac{1}{180}\right)^{2}(5+5+\cdots+5) \\
& =5 / 180 \\
& =1 / 36
\end{aligned}
$$

(b): The Central Limit Theorem tells us that \bar{X} is approximately $N(17,1 / 36)$, so that $Z:=$ $(\bar{X}-17) / \sqrt{1 / 36}$ is approximately $N(0,1)$. Thus we have

$$
\begin{aligned}
P(\bar{X}>17.3) & =P\left(\frac{\bar{X}-17}{\sqrt{1 / 36}}>\frac{17.3-17}{\sqrt{1 / 36}}\right) \\
& =P(Z>1.8) \\
& =1-P(Z<1.8) \\
& =1-\Phi(1.8) \\
& =1-(0.9641) \\
& =3.59 \%
\end{aligned}
$$

[^0]: ${ }^{1}$ Here we use the fact that $x \cdot e^{-\lambda x} \rightarrow 0$ as $x \rightarrow \infty$. I should have included this as a hint.

[^1]: ${ }^{2}$ The rule of thumb says that $n p$ and $n q$ should both be greater than 10 . Basically, we need n to be large and we need p not too close to 0 or 1 .

[^2]: ${ }^{3}$ If we hadn't used the continuity correction above then we would have found 32.56%, which is pretty bad.
 ${ }^{4}$ Independent and identically distributed. This means that the X_{i} are jointly independent and each has the same density function (which is unknown to us).

