
Math 224 Spring 2022
Homework 5 Drew Armstrong

1. Uniform Random Variable. Let U be the uniform random variable on the interval
[2, 6]. Compute the following:

P (3 < U < 4), P (3 < U < 7), µ = E[U ], σ2 = Var(U), P (µ− σ < U < µ+ σ).

Recall that the density of U is

fU (x) =

{
1/4 2 ≤ x ≤ 6,

0 otherwise.

The idea is that the density is constant on the interval [2, 6]. We choose 1/4 = 1/(6− 2) so
that the total area is 1. Here is a picture:

To compute each probability we must integrate the density. First we have

P (3 < U < 4) =

∫ 4

3
fU (x) dx =

∫ 4

3
(1/4) dx = 1/4.

We must break up the second interval because the density has a piecewise definition:

P (3 < U < 7) =

∫ 7

3
fU (x) dx =

∫ 6

3
1/4 dx+

∫ 7

6
0 dx = 3/4 + 0 = 3/4.

Remark: The integral of a constant is
∫ b
a c dx = c[x]ba = c(b− a). We can also view this as the

area of a rectangle with base b− a and height c.

The first moment is

E[U ] =

∫ ∞
−∞

x · fU (x) dx

=

∫ 2

−∞
0 dx+

∫ 6

2
x · (1/4) dx+

∫ ∞
6

0 dx.

= (1/4)[x2/2]62

= (1/4)[36/2− 4/2]

= 4,



which we could have guessed because the distribution is symmetric about 4. The second
moment is

E[U2] =

∫ ∞
−∞

x2 · fU (x) dx

=

∫ 6

2
x2(1/4) dx

= (1/4)[x3/3]62

= (1/4)[216/3− 8/3]

= 52/3,

and hence the variance is

Var(U) = E[U2]− E[U ]2 = 52/3− (4)2 = 4/3.

Finally, we compute the probability that U falls between µ − σ and µ + σ. Since µ = 4 and
σ =

√
4/3 we have

P (µ− σ < U < µ+ σ) = P (4−
√

4/3 < U < 4 +
√

4/3)

=

∫ 4+
√

4/3

4−
√

4/3
(1/4) dx

= (1/4)[x]
4+
√

4/3

4−
√

4/3

= (1/4)[(7/2 +
√

3/4)− (7/2−
√

3/4)]

= (1/4)[2
√

4/3]

≈ 57.7%.

Remark: We would have gotten 57.7% for the uniform random variable on any interval [a, b].
See the notes for a proof.

2. A Continuous Random Variable. Let X be a continuous random variable with the
following density:

fX(x) =

{
c(1− x4) −1 ≤ x ≤ 1

0 otherwise.

(a) Find the correct value of the constant c.
(b) Compute µ = E[X] and σ2 = Var(X).
(c) Compute P (µ− σ < X < µ+ σ).
(d) Draw a picture of the whole situation.

(a): The total mass of a probability density must be 1:

1 =

∫ 1

−1
c · (1− x4) dx = c[x− x5/5]1−1 = c[(1− 1/5)− (−1 + 1/5)] = c[8/5].

Hence we must have c = 5/8.



(b): The mean is

µ = E[X] =

∫ 1

−1
x · (5/8)(1− x4) dx

=

∫ 1

−1
(5/8)(x− x5) dx

= (5/8)[x2/2− x6/6]1−1

= (5/8)[(1/2− 1/6)− (1/2− 1/6)]

= (5/8)[0]

= 0,

which we could have predicted because the distribution is symmetric about 0. The second
moment is

E[X2] =

∫ 1

−1
x2 · (5/8)(1− x4) dx

=

∫ 1

−1
(5/8)(x2 − x6) dx

= (5/8)[x3/3− x7/7]1−1

= (5/8)[(1/3− 1/7)− (−1/3 + 1/7)]

= (5/8)[5/12]

= 5/21,

and hence the variance is

σ2 = Var(X) = E[X2]− E[X]2 = 5/21− 02 = 5/21.

(c): Finally, we compute the probability that X falls between µ − σ and µ + σ. We will use

µ = 0 but we will leave σ =
√

5/12 unevaluated until the end of the calculation:

P (µ− σ < X < µ+ σ) = P (−σ < X < σ)

=

∫ σ

−σ
(5/8)(1− x4) dx

= (5/8)[x− x5/5]σ−σ

= (5/8)[(σ − σ5/5)− (−σ + σ5/5)]

= (5/8)[2σ − 2σ5/5]

= 2(5/8)σ[1− σ4/5]

= (10/8)
√

5/21[1− (5/12)2/5]]

= (545/441)
√

5/21

= 60.3%.

Note that 60.3% is greater than 57.7% because this random variable is more concentrated near
its mean than the uniform distribution in Problem 1.

(d): Here is a picture:



3. The Exponential Distribution. Fix some positive real number λ > 0 and let X be a
continuous random variable with exponential density:

fX(x) =

{
λe−λx x ≥ 0,

0 x < 0.

(a) Verify that
∫
fX(x) dx = 1. [Hint: Note that e−λx → 0 as x→ +∞.]

(b) Use integration by parts to compute E[X].

(a): For any constant a we have
∫
eax dx = eax/a. Hence∫ ∞

0
λe−λx dx = λ[e−λx/(−λ)]∞0

= λ[0 + e−λ0/λ]

= λ[0 + 1/λ]

= 1.

(b): The expected value is defined by

E[X] =

∫ ∞
0

x · λe−λx dx.

In order to compute this we use integration by parts. For any functions u and v, the product
rule for differentials says that

d(uv) = udv + vdu.

Then integrating both sides gives the formula for integration by parts:

uv =

∫
udv +

∫
vdu,

or equivalently ∫
udv = uv +

∫
vdu.



In our case we will take u = x and dv = λe−λxdx so that du = dx and v = −e−λx. Then1

E[X] =

∫ ∞
0

x · λe−λx dx

=

∫ ∞
0

udv

= [uv]∞0 −
∫ ∞
0

vdu

= [−x · e−λx]∞0 −
∫ ∞
0
−e−λx dx

= [0− 0]− [−e−λ/(−λ)]∞0

= [0− 0]− [0− 1/λ]

= 1/λ.

Remark: We can view the (continuous) exponential random variable as a limit of (discrete)
geometric random variables. Consider a coin with P (H) = p and let G be the number of coin
flips until we see heads for the first time. If P (H) = p then the expected number of coin flips
is E[G] = 1/p. In this problem we can think of X as the amount of time we have to wait
until a certain radioactive particle decays. This decay is controlled by a decay constant λ > 0
and the expected waiting time until decay is E[X] = 1/λ. Without going into details, we can
think of a radioactive particle as a “continuously flipping coin”, where heads means “decay”
and tails means “don’t decay”, so that X is the amount of time we have to wait until we see
heads. This interpretation emphasizes a strange quantum property of radioactive particles:
they are memoryless. If a particle has not decayed for 100 years, this does not increase the
chance that it will decay tomorrow.

4. Table of Z-Scores. Let Z ∼ N(0, 1) so that P (Z ≤ z) = Φ(z). Use the attached table
to compute the following probabilities:

(a) P (Z < −0.3)
(b) P (0.25 < Z < 1.25)
(c) P (Z > 1), P (Z > 2), P (Z > 3)
(d) P (|Z| < 1), P (|Z| < 2), P (|Z| < 3)

We repeatedly use the following facts:

P (z1 < Z < z2) = Φ(z2)− Φ(z1), Φ(z < Z) = 1− Φ(z), P (−z) = 1− Φ(z).

(a): P (Z < −0.3) = 1− Φ(0.3) = 1− (0.6179) = 30.21%

(b): P (0.25 < Z < 1.25) = Φ(1.25)− Φ(0.25) = (0.8944)− (0.5987) = %29.57

(c): For each we use the formula P (Z > z) = 1− Φ(z):

Φ(Z > 1) = 1− Φ(1) = 1− (0.8413) = 15.85%

Φ(Z > 2) = 1− Φ(2) = 1− (0.9772) = 2.28%

Φ(Z > 3) = 1− Φ(3) = 1− (0.9987) = 0.13%

1Here we use the fact that x · e−λx → 0 as x→∞. I should have included this as a hint.



(d): First we note that

P (|Z| < z) = P (−z < Z < z) = Φ(z)− Φ(−z) = Φ(z)− [1− Φ(z)] = 2Φ(z)− 1.

Thus we have:

Φ(|Z| < 1) = 2Φ(1)− 1 = 2(0.8413)− 1 = 68.26%

Φ(|Z| < 2) = 2Φ(2)− 1 = 2(0.9772)− 1 = 95.44%

Φ(|Z| < 3) = 2Φ(3)− 1 = 2(0.9987)− 1 = 99.74%

In summary, the probability that a normal random variable falls within 1, 2 or 3 standard
deviations of its mean is approximately 68%, 95% and 99.7%, respectively. Here is a picture:

Remark: Here are some useful general formulas for constants a, b with b > 0:

P (|Z − a| < b) = P (a− b < Z < a+ b),

P (|Z − a| > b) = P (Z < a− b) + P (Z > a+ b).

5. The de Moivre-Laplace Theorem. Consider a coin with p = P (H) = 35%. Suppose
that you flip the coin 100 times and let X be the number of times you get heads.

(a) Compute E[X] and Var(X).
(b) The de Moivre-Laplace Theorem says that X is approximately normal. Use this to

estimate the probability P (34 ≤ X ≤ 36). Don’t forget to use a continuity correction.

(a): Since X has a binomial distribution with parameters n = 100 and p = 0.35 we know that

E[X] = np = 35 and Var(X) = npq = 22.75.

(b): Since np and nq are both reasonably large,2 the de Moivre-Laplace theorem tells us that
X is approximately normal. Let X ′ be a normal random variable with the same mean and

2The rule of thumb says that np and nq should both be greater than 10. Basically, we need n to be large
and we need p not too close to 0 or 1.



variance: X ′ ∼ N(35, 22.75). Then we have

P (34 ≤ X ≤ 36) ≈ P (33.5 < X ′ < 36.5)

= P

(
33.5− 35√

22.75
<
X ′ − 35√

22.75
<

36.5− 35√
22.75

)
≈ P (−0.31 < Z < 0.31)

= Φ(0.31)− Φ(−0.31)

= Φ(0.31)− [1− Φ(0.31)]

= 2Φ(0.31)− 1

= 2(0.6217)− 1

= 24.34%.

In the first step we used a continuity correction, as described by the following picture:

My computer says that the exact probability is 24.66%, so our approximation is pretty good.3

6. The Central Limit Theorem. Let X1, X2, . . . , X180 be a sequence of iid4 random
variables with mean µ = 17 and variance σ2 = 5. Consider the sample mean

X =
1

180
(X1 +X2 + · · ·+X180).

(a) Compute E[X] and Var(X).
(b) The Central Limit Theorem tells us that X is approximately normal. Use this fact

together with part (a) to estimate the probability P (X > 17.3).

3If we hadn’t used the continuity correction above then we would have found 32.56%, which is pretty bad.
4Independent and identically distributed. This means that the Xi are jointly independent and each has the

same density function (which is unknown to us).



(a): We use linearity to compute the expected value:

E[X] = E

[
1

180
(X1 +X2 + · · ·+X180)

]
=

1

180
(E[X1] + E[X2] + · · ·+ E[X180])

=
1

180
(17 + 17 + · · ·+ 17)

= 17.

To compute the variance, we use the fact that the Xi are independent so that the variance of
the sum is the sum of the variances. We also use the fact that Var(aX) = a2Var(X) for all
constants a and random variables X:

Var(X) = Var

(
1

180
(X1 +X2 + · · ·+X180)

)
=

(
1

180

)2

(Var(X1) + Var(X2) + · · ·+ Var(X180))

=

(
1

180

)2

(5 + 5 + · · ·+ 5)

= 5/180

= 1/36.

(b): The Central Limit Theorem tells us that X is approximately N(17, 1/36), so that Z :=

(X − 17)/
√

1/36 is approximately N(0, 1). Thus we have

P (X > 17.3) = P

(
X − 17√

1/36
>

17.3− 17√
1/36

)
= P (Z > 1.8)

= 1− P (Z < 1.8)

= 1− Φ(1.8)

= 1− (0.9641)

= 3.59%.


