1. Uniform Random Variable. Let U be the uniform random variable on the interval $[2,6]$. Compute the following:

$$
P(3<U<4), \quad P(3<U<7), \quad \mu=E[U], \quad \sigma^{2}=\operatorname{Var}(U), \quad P(\mu-\sigma<U<\mu+\sigma) .
$$

2. A Continuous Random Variable. Let X be a continuous random variable with the following density:

$$
f_{X}(x)= \begin{cases}c\left(1-x^{4}\right) & -1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the correct value of the constant c.
(b) Compute $\mu=E[X]$ and $\sigma^{2}=\operatorname{Var}(X)$.
(c) Compute $P(\mu-\sigma<X<\mu+\sigma)$.
(d) Draw a picture of the whole situation.
3. The Exponential Distribution. Fix some positive real number $\lambda>0$ and let X be a continuous random variable with exponential density:

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

(a) Verify that $\int f_{X}(x) d x=1$. [Hint: Note that $e^{-\lambda x} \rightarrow 0$ as $x \rightarrow+\infty$.]
(b) Use integration by parts to compute $E[X]$.
4. Table of Z-Scores. Let $Z \sim N(0,1)$ so that $P(Z \leq z)=\Phi(z)$. Use the attached table to compute the following probabilities:
(a) $P(Z<-0.3)$
(b) $P(0.25<Z<1.25)$
(c) $P(Z>1), P(Z>2), P(Z>3)$
(d) $P(|Z|<1), P(|Z|<2), P(|Z|<3)$
5. The de Moivre-Laplace Theorem. Consider a coin with $p=P(H)=35 \%$. Suppose that you flip the coin 100 times and let X be the number of times you get heads.
(a) Compute $E[X]$ and $\operatorname{Var}(X)$.
(b) The de Moivre-Laplace Theorem says that X is approximately normal. Use this to estimate the probability $P(34 \leq X \leq 36)$. Don't forget to use a continuity correction.
6. The Central Limit Theorem. Let $X_{1}, X_{2}, \ldots, X_{180}$ be a sequence of iid ${ }^{17}$ random variables with mean $\mu=17$ and variance $\sigma^{2}=5$. Consider the sample mean

$$
\bar{X}=\frac{1}{180}\left(X_{1}+X_{2}+\cdots+X_{180}\right) .
$$

(a) Compute $E[\bar{X}]$ and $\operatorname{Var}(\bar{X})$.
(b) The Central Limit Theorem tells us that \bar{X} is approximately normal. Use this fact together with parts (a) and (b) to estimate the probability $P(\bar{X}>17.3)$.

[^0]
[^0]: ${ }^{1}$ Independent and identically distributed. This means that the X_{i} are jointly independent and each has the same density function (which is unknown to us).

