
Math 224 Spring 2022
Homework 4 Drew Armstrong

1. Bilinearity of Covariance. Let X and Y be random variables on the same experiment
with the following moments:

E[X] = 1, E[X2] = 2, E[Y ] = 2, E[Y 2] = 6, E[XY ] = 5.

(a) Compute Var(X), Var(Y ) and Cov(X,Y ).
(b) Use part (a) to compute Cov(2X − Y, 3X + 7Y ).

Remark: Oops, the moments are supposed to satisfy E[X2] ·E[Y 2] ≥ E[XY ]2, which is called
the Cauchy-Schwarz inequality. I’ll fix this next time I teach the course.

(a): We use the algebraic formulas for variance and covariance to obtain

Var(X) = E[X2]− E[X]2 = 2− 12 = 1,

Var(Y ) = E[Y 2]− E[Y ]2 = 6− 22 = 2,

Cov(X,Y ) = E[XY ]− E[X] · E[Y ] = 5− 1 · 2 = 3.

(b): We use part (a) and the bilinearity of covariance to obtain

Cov(2X − Y, 3X + 7Y ) = Cov(2X, 3X) + Cov(2X, 7Y ) + Cov(−Y, 3X) + Cov(−Y, 7Y )

= 6 · Cov(X,X) + 14 · Cov(X,Y )− 3 · Cov(Y,X)− 7 · Cov(Y, Y )

= 6 ·Var(X)− 7 ·Var(Y ) + 11 · Cov(X,Y )

= 6 · 1− 7 · 2 + 11 · 3
= 25.

2. Standardization. Let X be a random variable with E[X] = µ and Var(X) = σ2.
Consider the random variable1

X ′ =
X − µ
σ

.

(a) Use linearity of expectation to compute E[X ′]
(b) Use properties of variance to compute Var(X ′).

(a): We use the linearity of expectation to obtain

E[X ′] = E

[
1

σ
·X − µ

σ

]
=

1

σ
· E[X]− µ

σ
=

1

σ
· µ− µ

σ
= 0.

(b): We use the algebraic properties of variance to obtain

Var(X ′) = Var

(
1

σ
·X − µ

σ

)
=

(
1

σ

)2

·Var(X) + 0 =

(
1

σ

)2

· σ2 + 0 = 1.

Remark: Standardization is a very important trick for working with normal random variables.
(See the next chapter.) If X is a normal random variable with mean µ and variance σ2 then
Z = (X − µ)/σ is a normal random variable with mean 0 and variance 1, called a standard
normal random variable.

1This is not a derivative. I just didn’t want to waste another letter of the alphabet.



3. Joint Distributions. Let X and Y be random variables on the same experiment. Suppose
that X and Y have the following joint pmf table:2

X \ Y 0 1 3

−1 1/12 1/12 2/12 4/12

1 2/12 3/12 3/12 8/12

3/12 4/12 5/12

(a) Compute E[X] and E[Y ].
(b) Compute Var(X) and Var(Y ).
(c) Compute E[XY ] and Cov(X,Y ).

(a): Using the definition of expected value gives

E[X] = (−1)(4/12) + (1)(8/12) = 4/12,

E[Y ] = (0)(3/12) + (1)(4/12) + (3)(5/12) = 19/12.

(b): To compute the variances we also need to know E[X2] and E[Y 2], which we compute
using the formula for the expected value of a function of a random variable:

E[X2] = (−1)2(4/12) + (1)2(8/12) = 12/12 = 1,

E[Y 2] = (0)2(3/12) + (1)2(4/12) + (3)2(5/12) = 49/12.

Then we use the algebraic formula for variance to obtain

Var(X) = E[X2]− E[X]2 = 1− (4/12)2 = 128/144 = 8/9,

Var(Y ) = E[Y 2]− E[Y ]2 = (49/12)− (19/12)2 = 227/144.

(c): First we compute E[XY ] using the formula for the expected value of a function of two
random variables:

E[XY ] =
∑
k,`

k`P (X = k, Y = `)

= (−1)(0)(1/12) + (−1)(1)(1/12) + (−1)(3)(2/12)

+ (1)(0)(2/12) + (1)(1)(3/12) + (1)(3)(3/12)

= −1/12− 6/12 + 3/12 + 9/12

= 5/12.

Then we use the algebraic formula for covariance to obtain

Cov(X,Y ) = E[XY ]− E[X] · E[Y ] =
5

12
−
(

4

12

)(
19

12

)
= − 16

144
= −1

9
.

4. Multinomial Covariance. Consider a fair 3-sided die with sides labeled {a, b, c}. Roll
the die 3 times and consider the following random variables:

A = the number of times that a shows up,

B = the number of times that b shows up.

2For example, the table says that P (X = −1, Y = 3) = 2/12 and P (Y = 3) = 5/12.



(a) Write out the joint pmf table of A and B. [Hint: Recall the formula

P (A = k,B = `) =
3!

k!`!(3− k − `)!
(1/3)k(1/3)`(1/3)3−k−`.]

(b) Use the joint pmf table to compute Cov(A,B). Observe that it is negative. Indeed, if
the number of a’s goes up then the number of b’s has a tendency to go down (and vice
versa) because the total number of rolls is fixed.

(a): Every number in the joint pmf table will have denominator 27 because

P (A = k,B = `) =
3!

k!`!(3− k − `)!
(1/3)k(1/3)`(1/3)3−k−` =

3!

k!`!(3− k − `)!

/
27.

Filling in the numerators give the following table:

A \ B 0 1 2 3

0 1
27

3
27

3
27

1
27

8
27

1 3
27

6
27

3
27 0 12

27

2 3
216

3
216 0 0 6

27

3 1
27 0 0 0 1

27

8
27

12
27

6
27

1
27

(b): Now we use the table to compute the covariance as we did in Problem 3. First we compute
E[A] and E[B]. Note that A and B have the same expected value:

E[A] = (0)(8/27) + (1)(12/27) + (2)(6/27) + (3)(1/27) = 27/27 = 1,

E[B] = (0)(8/27) + (1)(12/27) + (2)(6/27) + (3)(1/27) = 27/27 = 1.

Then we compute the mixed moment:

E[AB] = (0)(0)(1/27) + (0)(1)(3/27) + (0)(2)(3/27) + (0)(3)(1/27)

+ (1)(0)(3/27) + (1)(1)(6/27) + (1)(2)(3/27) + (1)(3)(0)

+ (2)(0)(3/27) + (2)(1)(3/27) + (2)(2)(0) + (2)(3)(0)

+ (3)(0)(1/27) + (3)(1)(0) + (3)(2)(0) + (3)(3)(0)

= 6/27 + 6/27 + 6/27

= 18/27

= 2/3.

Finally, we use the algebraic formula for covariance:

Cov(A,B) = E[AB]− E[A] · E[B] =
2

3
− 12 = −1

3
.

Remark: We could have predicted this answer with a general formula. Suppose that a fair
s-sided die is rolled n times. Let pi be the probability that side i shows up and let Xi be the
number of times that side i shows up. Then we have

Var(Xi) = npi(1− pi) and Cov(Xi, Xj) = −npipj for i 6= j.



In our case we had s = 3, n = 3, p1 = p2 = p3 = 1/3, A = X1 and B = X2, hence

Cov(A,B) = Cov(X1, X2) = −np1p2 = −3(1/3)(1/3) = −1/3.

You do not need to memorize this general formula.

5. The Hat Check Problem. Suppose that n people go to a party and leave their hats
with the hat check person.3 At the end of the party the hat check person returns the hats
randomly. Consider the following Bernoulli variables:

Xi =

{
1 if the ith person gets their own hat back,

0 otherwise.

Let X = X1 + · · ·+Xn be the total number of people who get their own hat back.

(a) Compute E[Xi] and Var(Xi) for any i. [Hint: Compute P (Xi = 1).]
(b) Use linearity to compute the expected value E[X].
(c) Compute the mixed moment E[XiXj ] for i 6= j. [Hint: Note that

XiXj =

{
1 if the ith and jth persons both get their own hat back,

0 otherwise.

This implies that P (XiXj = 1) = P (Xi = 1, Xj = 1) = P (Xi = 1)P (Xj = 1|Xi = 1).]
(d) Use parts (a) and (c) to compute the covariance Cov(Xi, Xj) = E[XiXi]−E[Xi]E[Xj ]

and the variance Var(X). [Hint: Bilinearity and symmetry of covariance gives

Var(X) = Cov(X1 + · · ·+Xn, X1 + · · ·+Xn)

=
∑
i,j

Cov(Xi, Xj)

=
∑
i

Cov(Xi, Xi) +
∑
i 6=j

Cov(Xi, Xj)

=
∑
i

Cov(Xi, Xi) + 2
∑
i<j

Cov(Xi, Xj)

=
∑
i

Var(Xi) + 2
∑
i<j

Cov(Xi, Xj).

The number of pairs in the second sum is
(
n
2

)
= n(n− 1)/2.]

(a): Intuition suggests that any individual person has a 1/n chance of getting their own hat
back. In other words, we have P (Xi = 1) = 1/n for any i.4 Then since Xi is Bernoulli with
P (Xi = 1) = 1/n and P (Xi = 0) = (n− 1)/n) we have

E[Xi] = 0 · P (Xi = 0) + 1 · P (Xi = 1) = 0 · (n− 1)/n+ 1 · 1/n = 1/n,

E[X2
i ] = 02 · P (Xi = 0) + 12 · P (Xi = 1) = 02 · (n− 1)/n+ 12 · 1/n = 1/n,

Var(Xi) = E[X2
i ]− E[Xi]

2 = (1/n)− (1/n)2 = (n− 1)/n2.

3Long ago people used to wear hats, but not indoors.
4We can make this more precise as follows. There are n! ways to return all the hats, and we assume that

each of these ways is equally likely. If person i gets their own hat back then there are (n− 1)! ways to return
the hats to the other n− 1 people. Hence

P (Xi = 1) = P (person i gets their own hat back) = (n− 1)!/n! = 1/n.



(b): Let X = X1 +X2 + · · ·+Xn be the total number of people who get their own hat back.
Then part (a) and linearity of expectation gives

E[X] = E[X1] + E[X2] + · · ·+ E[Xn]

= 1/n+ 1/n+ · · ·+ 1/n︸ ︷︷ ︸
n times

= n(1/n) = 1.

In other words, if the hats are returned randomly then, on average, exactly one person will
get their own hat back. And this is independent of the number n. That’s interesting.

Remark: We could have tried to compute the expectation directly from the definition:

E[X] =
∑
k

k · P (X = k).

But in this case the probabilities P (X = k) are very difficult to compute. For example, I
claim that the probability that no one gets their own hat back is

P (X = 0) =
1

0!
− 1

1!
+

1

2!
− · · ·+ (−1)n

1

n!
.

Once again, this illustrates the usefulness of the linearity of expectation.

Parts (c) and (d) are tricky and you do not need to know them for the exam.

(c): Since Xi and Xj have values 0 or 1 then the product XiXj also has value 0 or 1. In
particular we have XiXj = 1 precisely when both Xi = 1 and Xj = 1. In other words,

XiXj =

{
1 if the ith and jth persons both get their own hat back,

0 otherwise.

This allows us to compute the probability P (XiXj = 1) as follows:

P (XiXj = 1) = P (Xi = 1 and Xj = 1)

= P (Xi = 1)P (Xj = 1 |Xi = 1).

The last step comes from the definition of conditional probability. From part (a) we know
that P (Xi = 1) = 1/n. And the conditional probability can also be computed by intuition.
After the ith person gets their own hat, there are n− 1 remaining hats, so there is a 1/(n− 1)
that the jth person gets their own hat:

P (Xj = 1 |Xi = 1) = 1/(n− 1).

Putting these together gives

P (XiXj = 1) =
1

n
· 1

n− 1
,

and hence the expected value is

E[XiXj ] = 0 · P (XiXj = 0) + 1 · P (XiXj = 1) = P (XiXj = 1) =
1

n(n− 1)
.

(c): It follows from parts (a) and (c) that

Cov(Xi, Xj) = E[XiXj ]− E[Xi] · E[Xj ] =
1

n(n− 1)
−
(

1

n

)2

=
1

n2(n− 1)
.



We will use this fact and the formula Var(Xi) = (n− 1)/n2 from part (a) to compute Var(X).
As in the hint, we can apply the bilinearity of covariance to obtain

Var(X) = Cov(X1 + · · ·+Xn, X1 + · · ·+Xn)

=
∑
i,j

Cov(Xi, Xj)

=
∑
i

Cov(Xi, Xi) +
∑
i 6=j

Cov(Xi, Xj)

=
∑
i

Cov(Xi, Xi) + 2
∑
i<j

Cov(Xi, Xj)

=
∑
i

Var(Xi) + 2
∑
i<j

Cov(Xi, Xj)

=
∑
i

n− 1

n2
+ 2

∑
i<j

1

n2(n− 1)
.

Since the summands don’t depend on i or j we only need to determine how many summands
there are.5 The sum over i has n terms and the sum over i < j has

(
n
2

)
= n(n − 1)/2 terms

because there are
(
n
2

)
ways to choose the numbers i and j from the index set {1, 2, . . . , n}. It

follows that

Var(X) =
∑
i

n− 1

n2
+ 2

∑
i<j

1

n2(n− 1)

= n · n− 1

n2
+ 2 ·

(
n

2

)
· 1

n2(n− 1)

= n · n− 1

n2
+ 2 · n(n− 1)

2
· 1

n2(n− 1)

=
n− 1

n
+

1

n
= 1.

That’s a surprise.

5For example, if a is constant then we have
∑n

i=1 a = na and
∑

1≤i<j≤n a = [n(n− 1)/2]a.


