1. Bilinearity of Covariance. Let X and Y be random variables on the same experiment with the following moments:

$$
E[X]=1, \quad E\left[X^{2}\right]=2, \quad E[Y]=2, \quad E\left[Y^{2}\right]=6, \quad E[X Y]=5 .
$$

(a) Compute $\operatorname{Var}(X), \operatorname{Var}(Y)$ and $\operatorname{Cov}(X, Y)$.
(b) Use part (a) to compute $\operatorname{Cov}(2 X-Y, 3 X+7 Y)$.
2. Standardization. Let X be a random variable with $E[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$. Consider the random variabl \AA^{1}

$$
X^{\prime}=\frac{X-\mu}{\sigma} .
$$

(a) Use linearity of expectation to compute $E\left[X^{\prime}\right]$
(b) Use properties of variance to compute $\operatorname{Var}\left(X^{\prime}\right)$.
3. Joint Distributions. Let X and Y be random variables on the same experiment. Suppose that X and Y have the following joint pmf table 2^{2}

$X \backslash Y$	0	1	3	
-1	$1 / 12$	$1 / 12$	$2 / 12$	$4 / 12$
1	$2 / 12$	$3 / 12$	$3 / 12$	$8 / 12$
	$3 / 12$	$4 / 12$	$5 / 12$	

(a) Compute $E[X]$ and $E[Y]$.
(b) Compute $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$.
(c) Compute $E[X Y]$ and $\operatorname{Cov}(X, Y)$.
4. Multinomial Covariance. Consider a fair 3 -sided die with sides labeled $\{a, b, c\}$. Roll the die 3 times and consider the following random variables:

$$
\begin{aligned}
& A=\text { the number of times that } a \text { shows up, } \\
& B=\text { the number of times that } b \text { shows up. }
\end{aligned}
$$

(a) Write out the joint pmf table of A and B. [Hint: Recall the formula

$$
\left.P(A=k, B=\ell)=\frac{3!}{k!\ell!(3-k-\ell)!}(1 / 3)^{k}(1 / 3)^{\ell}(1 / 3)^{3-k-\ell} .\right]
$$

(b) Use the joint pmf table to compute $\operatorname{Cov}(A, B)$. Observe that it is negative. Indeed, if the number of a 's goes up then the number of b 's has a tendency to go down (and vice versa) because the total number of rolls is fixed.

[^0]5. The Hat Check Problem. Suppose that n people go to a party and leave their hats with the hat check person 3^{3} At the end of the party the hat check person returns the hats randomly. Consider the following Bernoulli variables:
\[

X_{i}= $$
\begin{cases}1 & \text { if the } i \text { th person gets their own hat back } \\ 0 & \text { otherwise }\end{cases}
$$
\]

Let $X=X_{1}+\cdots+X_{n}$ be the total number of people who get their own hat back.
(a) Compute $E\left[X_{i}\right]$ and $\operatorname{Var}\left(X_{i}\right)$ for any i. [Hint: Compute $P\left(X_{i}=1\right)$.]
(b) Use linearity to compute the expected value $E[X]$.
(c) Compute the mixed moment $E\left[X_{i} X_{j}\right]$ for $i \neq j$. [Hint: Note that

$$
X_{i} X_{j}= \begin{cases}1 & \text { if the } i \text { th and } j \text { th persons both get their own hat back, } \\ 0 & \text { otherwise }\end{cases}
$$

This implies that $P\left(X_{i} X_{j}=1\right)=P\left(X_{i}=1, X_{j}=1\right)=P\left(X_{i}=1\right) P\left(X_{j}=1 \mid X_{i}=1\right)$.]
(d) Use parts (a) and (c) to compute the covariance $\operatorname{Cov}\left(X_{i}, X_{j}\right)=E\left[X_{i} X_{i}\right]-E\left[X_{i}\right] E\left[X_{j}\right]$ and the variance $\operatorname{Var}(X)$. [Hint: Bilinearity and symmetry of covariance gives

$$
\begin{aligned}
\operatorname{Var}(X) & =\operatorname{Cov}\left(X_{1}+\cdots+X_{n}, X_{1}+\cdots+X_{n}\right) \\
& =\sum_{i, j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i} \operatorname{Cov}\left(X_{i}, X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i} \operatorname{Cov}\left(X_{i}, X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right) .
\end{aligned}
$$

The number of pairs in the second sum is $\binom{n}{2}=n(n-1) / 2$.]

[^1]
[^0]: ${ }^{1}$ This is not a derivative. I just didn't want to waste another letter of the alphabet.
 ${ }^{2}$ For example, the table says that $P(X=-1, Y=3)=2 / 12$ and $P(Y=3)=5 / 12$.

[^1]: ${ }^{3}$ Long ago people used to wear hats, but not indoors.

