
Math 224 Spring 2022
Homework 3 Drew Armstrong

1. Functions of a Random Variable. Let X be the number of heads obtained in 3 flips
of a fair coin. Compute the following expected values:

(a) E[X2],
(b) E[2X ],
(c) E[etX ], where t is some constant.

[Hint: The general formula is E[g(X)] =
∑

k g(k) · P (X = k).]

First we compile a table of the pmf:

k 0 1 2 3

P (X = k) 1
8

3
8

3
8

1
8

Then we use the formula for E[g(X)] to compute the expected values.

(a): In this case we have g(X) = X2:

E[X2] =
∑
k

k2 · P (X = k) = 02
(

1

8

)
+ 12

(
3

8

)
+ 22

(
3

8

)
+ 32

(
1

8

)
= 3

(b): In this case we have g(X) = 2X :

E[2X ] =
∑
k

2k · P (X = k) = 20
(

1

8

)
+ 21

(
3

8

)
+ 22

(
3

8

)
+ 23

(
1

8

)
=

27

8

(b): In this case we have g(X) = etX where t is an unknown constant:

E[etX ] =
∑
k

etk · P (X = k) = e0t
(

1

8

)
+ et

(
3

8

)
+ e2t

(
3

8

)
+ e3t

(
1

8

)
=

1

8

(
1 + 3et + 3e2t + e3t

)
This formula does not simplify any further.

Remark: The expression E[etX ] might seem random, but in fact this is an important concept
called the moment generating function of the random variable X:

MX(t) = E[etX ] =
∑
k

etkP (X = k).

The reason for the name is as follows. You may recall the power series expansion of the
exponential function:

ex = 1 + x +
x2

2
+

x3

6
+ · · ·+ xn

n!
+ · · · .

If we substitute tX for t then this becomes

etX = 1 + Xt +
X2

2
t2 +

X3

6
t3 + · · ·+ Xn

n!
tn + · · · .

Then using the linearity of expectation gives

E[etX ] = 1 + E[X]t +
E[X2]

2
t2 +

E[X3]

6
t3 + · · ·+ E[Xn]

n!
tn + · · · .



Thus the coefficients of t in the expansion of E[etX ] are essentially just the moments of X:

E[X], E[X2], E[X3], . . . .

Sometimes this is the easiest way to compute the moments, especially when X is related to
the normal distribution. We will return to this in Chapter 3.

The next problem uses a different kind of generating function, called the probability generating
function. It is particularly useful for studying binomial random variables.

2. Tricks With the Binomial Theorem. Let X be a binomial random variable with
parameters (n, p) and let z be any real number. The following function G(z) is called the
probability generating function of X:

G(z) =

n∑
k=0

P (X = k) · zk.

(a) Prove that G′(1) = E[X]. [This is the derivative of G(z) evaluated at z = 1.]
(b) Use the Binomial Theorem to prove that G(z) = (pz + q)n.
(c) Combine parts (a) and (b) to prove that E[X] = np.

(a): The derivative with respect to z is

G′(z) =
n∑

k=0

P (X = k) · kzk−1.

Then substituting z = 1 gives

G′(1) =

n∑
k=0

P (X = k) · k1k−1 =

n∑
k=0

k · P (X = k) = E[X].

(b): Since X is binomial we know that P (X = k) =
(
n
k

)
pkqn−k. And the Binomial Theorem

says that for any numbers a, b we have

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k.

Hence substituting a = pz and b = q gives

(pz + q)n =

n∑
k=0

(
n

k

)
(pz)kqn−k

=

n∑
k=0

(
n

k

)
pkqn−k · zk

=

n∑
k=0

P (X = k) · zk

= G(z).

(c): First we use (b) to compute the derivative of G(z) with respect to z:

G′(z) = n(pq + q)n−1 · (p1 + 0) = np(pz + q)n−1.

Then we use (a) to compute the expected value:

E[X] = G′(1) = np(p1 + q)n−1 = np(1)n−1 = np.



Remark: This is often the proof given in probability textbooks. Personally I find it too tricky,1

and the concept of the probability generating functions turns out not to be very useful for
other random variables. The moment generating function, discussed after Problem 1, is a
much more useful concept.

3. Sums of Random Variables. A fair coin has sides labeled {1, 3}. Suppose that you flip
the coin three times and consider the random variables X1, X2, X3 defined by

Xi = the number that shows up on the ith coin flip.

(a) Compute E[X1], E[X2] and E[X3].
(b) Let X = X1 + X2 + X3 be the sum of the three numbers you get. Compute the

probability mass function P (X = k) and draw the probability histogram of X. [Hint:
There is no shortcut. You must write down all 8 elements of the sample space.]

(c) Compute E[X] using the pmf for X from part (b).
(d) Compute E[X] using linearity and your answer from part (a).

(a): For any i we have P (Xi = 1) = 1/2 and P (Xi = 3) = 1/2, hence

E[Xi] = 1P (Xi = 1) + 3P (Xi = 3) = 1(1/2) + 3(1/2) = 2.

On average, we expect to see the number 2 on any particular coin flip. We will return to this
in part (d).

(b): Consider the 8 elements of the sample space:

S = {111, 113, 131, 311, 133, 313, 331, 333}.
Here are the corresponding values of X:

s 111 113 131 311 133 313 331 333

X(s) 3 5 5 5 7 7 7 9

Since the outcomes are equally likely (the coin is fair) we obtain the pmf table of X:

k 3 5 7 9

P (X = k) 1
8

3
8

3
8

1
8

Here is the histogram:

1The proof using linearity and expressing X as a sum of Bernoulli random variables is much more intuitive
and much more useful for other situations.



(c): We can see from the symmetry of the histogram that E[X] = 6, but let’s check it anyway:

E[X] = 3P (X = 3) + 5P (X = 5) + 7P (X = 7) + 9P (X = 9)

= 3(1/8) + 5(3/8) + 7(3/8) + 9(1/8)

= 48/8

= 6.

(d): Instead of going through all the work in part (b) we could have computed the expected
value directly from (a) using linearity. Recall that X = X1 + X2 + X3 and E[X1] = E[X2] =
E[X3] = 2, hence

E[X] = E[X1] + E[X2] + E[X3] = 2 + 2 + 2 = 6.

Remark: The advantage of linearity is that it can be extended to any number of coin flips.
Suppose you flip the coin 100 times. Let Xi be the number you obtain on the ith flip and let
X = X1 + · · ·+ X100 be the sum. Then the expected value of X is

E[X] = E[X1] + E[X2] + · · ·+ E[X100] = 2 + 2 + · · ·+ 2 = 2 · · · 100 = 200.

On the other hand, the method in part (b) and (c) is quite hard to generalize. Indeed, the
sample space for 100 coin flips has 2100 elements! You would need to be really clever to work
out the pmf of X. And this becomes even harder with dice instead of coins.

Moral: Linearity of expectation is a powerful tool that allows us to ignore many details.

4. Roulette. A European roulette wheel has 37 pockets: 1 colored green, 18 colored red
and 18 colored black. To play the game you pay $1 and pick a color from {r, b, g} (red, black,
green). Then the croupier2 spins the wheel and observes which pocket a marble falls into.
Your winnings are decided by the following rules:

• If you pick r and the marble lands in a red pocket you win $2.
• If you pick b and the marble lands in a black pocket you win $2.
• If you pick g and the marble lands in the green pocket you win $35.
• Otherwise you get nothing.

Suppose that the 37 pockets are equally likely and let W be your winnings.

(a) Compute E[W ] if you pick r. [You get the same answer for color b.]
(b) Compute E[W ] if you pick g.
(c) Compute E[W ] if you pick from {r, b, g} at random, each with probability 1/3.

[Hint: In each case the random variable W has support {0, 2, 35}, hence you need to compute
the probabilities P (W = 0), P (W = 2) and P (W = 35).]

(a): Suppose that you pick red. Then the value of your winnings W is either 0 or 2. The
probabilities are

P (W = 0) = 19/37 and P (W = 2) = 18/37

since 18 of the 37 slots are red and 19 slots are “not red”. Hence your expected winnings are

E[W ] = 0P (W = 0) + 2P (W = 2) = 0(19/37) + 2(18/37) = 36/37 = $0.973.

Remark: Your profit is winnings minus the cost to play: W − 1. So your expected profit is

E[W − 1] = E[W ]− 1 = 1− 0.973 = −$0.027.

2The person who spins the wheel.



We could also say that the house edge is 2.7%. On average, the casino will take 2.7% of your
money each time you bet red.

(b): Suppose you pick green. Then the value of your winning W is either 0 or 35. The
probabilities are

P (W = 0) = 36/37 and P (W = 35) = 1/37,

since 1 slot is green and 36 slots are “not green”. Your expected winnings are

E[W ] = 0(36/37) + 35(1/37) = 35/37 = $0.946.

Note that you win less money on average when you pick green than when you pick red or
black. Don’t be fooled!

(c): This one is trickier than I intended it to be. The goal is to compute the probabilities
P (W = 0), P (W = 2) and P (W = 35), since then we will obtain the expected value

E[W ] = 0P (W = 0) + 2P (W = 2) + 35P (W = 35).

So how can we compute the probabilities? Let’s name three events:

R = you bet on red,

B = you bet on black,

G = you bet on green.

We have assumed that P (R) = P (B) = P (G) = 1/3. We also know the values of the various
conditional probabilities P ({W = k}|R), P ({W = k}|B), P ({W = k}|G). These are just the
numbers we computed in parts (a) and (b). Then since R,B,G divide the sample space we
can use the Law of Total Probability:

P (W = k) = P ({W = k} ∩R) + P ({W = k} ∩B) + P ({W = k} ∩G)

= P (R)P ({W = k}|R) + P (B)P ({W = k}|B) + P (G)P ({W = k}|G).

For the three possible values of k we obtain

P (W = 0) = (1/3)(19/37) + (1/3)(19/37) + (1/3)(36/37) = 74/111,

P (W = 2) = (1/3)(18/37) + (1/3)(18/37) + (1/3)(0/37) = 36/111,

P (W = 35) = (1/3)(0/37) + (1/3)(0/37) + (1/3)(1/37) = 1/111.

Hence the expected of your winnings is

E[W ] = 0(74/111) + 2(36/111) + 35(1/111) = 107/111 = $0.964.

Remark: You might have noticed that this answer can be obtained more easily by combining
the answers from (a) and (b) in the following reasonable way:

(1/3)(36/37) + (1/3)(36/37) + (1/3)(35/37) = 107/111.

To explain why this is correct requires the concept of conditional expectation. Given a random
variable X and an event A, we let E[X|A] denote the expected value of X, assuming that A
happens. Then it follows from a general property of conditional expectation that

E[W ] = P (R)E[W |R] + P (B)E[W |B] + P (G)E[W |G].

We won’t study conditional expectation in this course.

Remark: You might find it easier to organize the information from part (c) in a tree diagram:



Here I have circled the branches corresponding to the event W = 0. To obtain the probability
P (W = 0) we add up the probabilities of these three branches:

P (W = 0) = (1/3)(19/37) + (1/3)(19/37) + (1/3)(36/37) = 74/111.

5. Geometric Random Variables. Let X be a geometric random variable with parameters
p and q = 1− p, so that P (X = k) = pqk−1.3 We can interpret X as the number of coin flips
until we see H for the first time, where P (H) = p. Let’s assume that p 6= 0 so that q < 1.

(a) Use the geometric series to verify that
∑

k P (X = k) = 1.

(b) If k ≥ 1, use the geometric series to prove that P (X ≥ k) = qk−1.
(c) Differentiate the geometric series to prove that E[X] = 1/p.

For any number |q| < 1 the geometric series tells us that

1 + q + q3 + q4 + · · · = 1/(1− q).

If we view both sides as functions of q then we can also differentiate to obtain4

0 + 1 + 2q + 3q2 + · · · = 1/(1− q)2.

In particular, both of these identities hold when q is the probability of tails and q < 1.

(a): The sum of the probabilities is∑
k

P (X = k) = P (X = 1) + P (X = 2) + P (X = 3) + · · ·

3We can think of X as the number of coin flips until we see heads.
4The derivative of (1 − q)−1 is (−1)(1 − q)−2(0 − 1) = (1 − q)−2.



= p + pq + pq2 + · · ·
= p(1 + q + q2 + · · · )

= p · 1

1− q
= p · 1

p
= 1.

(b): If k ≥ 1 then we have

P (X ≥ k) = P (X = k) + P (X = k + 1) + P (X = k + 2) + · · ·

= pqk−1 + pqk + pqk+1 + · · ·

= pqk−1(1 + q + q2 + · · · )

= pqk−1 · 1

1− q
= pqk−1 · 1

p
= qk−1.

Note that part (a) is a special case of (b) when k = 1.

(c): The expected value of X is

E[X] =
∑
k

k · P (X = k)

= 1P (X = 1) + 2P (X = 2) + 3P (X = 3) + · · ·
= 1p + 2pq + 3pq2 + · · ·
= p(1 + 2q + 3q2 + · · · )

= p · 1

(1− q)2
= p · 1

pp
=

1

p
.

6. The Coupon Collector Problem. Suppose that you roll a fair n-sided die until you see
all n sides, and let X be the number of rolls that you did. In this problem I will guide you
through a method to compute the expected number of rolls E[X].

(a) Fix some 0 ≤ k ≤ n− 1 and suppose that you have already seen k sides of the die. Let
Xk be the number of die rolls until you see one of the remaining n− k sides. Compute
E[Xk]. [Hint: This is a geometric random variable. Think of the die as a coin with
T =“you see one of the k sides that you’ve already seen” and H =“you see one of the
n− k sides that you haven’t seen yet”. Use Problem 5(c).]

(b) We observe that X = X0 + X1 + · · ·+ Xn−1 is the total number of rolls until you see
all n sides of the die. Use part (a) and linearity of expectation to compute E[X].

(c) Example: Suppose that you roll a fair 6-sided die until you see all six sides. On average,
how many rolls do you expect to make?

Idea: We express X as a sum X = X0 + X1 + · · · + Xn−1, where Xk is how long we have to
wait between seeing k faces and k + 1 faces of the die. It turns out that the expected value of
Xk is easy to compute.

(a): Assuming we have already seen k faces of the die, let Xk be the number of die rolls until
we see one of the remaining n− k faces. We can think of each roll as a coin flip with T = we
see one the k faces we’ve already seen and H = we see one of the n− k faces that we haven’t
seen yet. Since P (H) = (n− k)/n, Problem 5(c) tells us that

E[Xk] =
1

P (H)
=

1

(n− k)/n
=

n

n− k
.



(b): Then we use the linearity of expectation to obtain

E[X] = E[X0] + E[X1] + E[X2] + · · ·+ E[Xn−1]

=
n

n− 0
+

n

n− 1
+

n

n− 2
+ · · ·+ n

1
.

Apart from factoring out n, this formula does not simplify.

(c): Let X be the number of die rolls until you see every side of a fair 6-sided die. Then

E[X] =
6

6
+

6

5
+

6

4
+

6

3
+

6

2
+

6

1
= 1 + 1.2 + 1.5 + 2 + 3 + 6

= 14.7.

This is a testable prediction.


