1. Functions of a Random Variable. Let X be the number of heads obtained in 3 flips of a fair coin. Compute the following expected values:
(a) $E\left[X^{2}\right]$,
(b) $E\left[2^{X}\right]$,
(c) $E\left[e^{t X}\right]$, where t is some constant.
[Hint: The general formula is $E[g(X)]=\sum_{k} g(k) \cdot P(X=k)$.]
First we compile a table of the pmf:

k	0	1	2	3
$P(X=k)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Then we use the formula for $E[g(X)]$ to compute the expected values.
(a): In this case we have $g(X)=X^{2}$:

$$
E\left[X^{2}\right]=\sum_{k} k^{2} \cdot P(X=k)=0^{2}\left(\frac{1}{8}\right)+1^{2}\left(\frac{3}{8}\right)+2^{2}\left(\frac{3}{8}\right)+3^{2}\left(\frac{1}{8}\right)=3
$$

(b): In this case we have $g(X)=2^{X}$:

$$
E\left[2^{X}\right]=\sum_{k} 2^{k} \cdot P(X=k)=2^{0}\left(\frac{1}{8}\right)+2^{1}\left(\frac{3}{8}\right)+2^{2}\left(\frac{3}{8}\right)+2^{3}\left(\frac{1}{8}\right)=\frac{27}{8}
$$

(b): In this case we have $g(X)=e^{t X}$ where t is an unknown constant:

$$
\begin{aligned}
E\left[e^{t X}\right] & =\sum_{k} e^{t k} \cdot P(X=k)=e^{0 t}\left(\frac{1}{8}\right)+e^{t}\left(\frac{3}{8}\right)+e^{2 t}\left(\frac{3}{8}\right)+e^{3 t}\left(\frac{1}{8}\right) \\
& =\frac{1}{8}\left(1+3 e^{t}+3 e^{2 t}+e^{3 t}\right)
\end{aligned}
$$

This formula does not simplify any further.
Remark: The expression $E\left[e^{t X}\right]$ might seem random, but in fact this is an important concept called the moment generating function of the random variable X :

$$
M_{X}(t)=E\left[e^{t X}\right]=\sum_{k} e^{t k} P(X=k) .
$$

The reason for the name is as follows. You may recall the power series expansion of the exponential function:

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots+\frac{x^{n}}{n!}+\cdots
$$

If we substitute $t X$ for t then this becomes

$$
e^{t X}=1+X t+\frac{X^{2}}{2} t^{2}+\frac{X^{3}}{6} t^{3}+\cdots+\frac{X^{n}}{n!} t^{n}+\cdots
$$

Then using the linearity of expectation gives

$$
E\left[e^{t X}\right]=1+E[X] t+\frac{E\left[X^{2}\right]}{2} t^{2}+\frac{E\left[X^{3}\right]}{6} t^{3}+\cdots+\frac{E\left[X^{n}\right]}{n!} t^{n}+\cdots
$$

Thus the coefficients of t in the expansion of $E\left[e^{t X}\right]$ are essentially just the moments of X :

$$
E[X], E\left[X^{2}\right], E\left[X^{3}\right], \ldots .
$$

Sometimes this is the easiest way to compute the moments, especially when X is related to the normal distribution. We will return to this in Chapter 3.

The next problem uses a different kind of generating function, called the probability generating function. It is particularly useful for studying binomial random variables.
2. Tricks With the Binomial Theorem. Let X be a binomial random variable with parameters (n, p) and let z be any real number. The following function $G(z)$ is called the probability generating function of X :

$$
G(z)=\sum_{k=0}^{n} P(X=k) \cdot z^{k}
$$

(a) Prove that $G^{\prime}(1)=E[X]$. [This is the derivative of $G(z)$ evaluated at $z=1$.]
(b) Use the Binomial Theorem to prove that $G(z)=(p z+q)^{n}$.
(c) Combine parts (a) and (b) to prove that $E[X]=n p$.
(a): The derivative with respect to z is

$$
G^{\prime}(z)=\sum_{k=0}^{n} P(X=k) \cdot k z^{k-1} .
$$

Then substituting $z=1$ gives

$$
G^{\prime}(1)=\sum_{k=0}^{n} P(X=k) \cdot k 1^{k-1}=\sum_{k=0}^{n} k \cdot P(X=k)=E[X] .
$$

(b): Since X is binomial we know that $P(X=k)=\binom{n}{k} p^{k} q^{n-k}$. And the Binomial Theorem says that for any numbers a, b we have

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Hence substituting $a=p z$ and $b=q$ gives

$$
\begin{aligned}
(p z+q)^{n} & =\sum_{k=0}^{n}\binom{n}{k}(p z)^{k} q^{n-k} \\
& =\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k} \cdot z^{k} \\
& =\sum_{k=0}^{n} P(X=k) \cdot z^{k} \\
& =G(z) .
\end{aligned}
$$

(c): First we use (b) to compute the derivative of $G(z)$ with respect to z :

$$
G^{\prime}(z)=n(p q+q)^{n-1} \cdot(p 1+0)=n p(p z+q)^{n-1}
$$

Then we use (a) to compute the expected value:

$$
E[X]=G^{\prime}(1)=n p(p 1+q)^{n-1}=n p(1)^{n-1}=n p
$$

Remark: This is often the proof given in probability textbooks. Personally I find it too tricky ${ }^{1}$ and the concept of the probability generating functions turns out not to be very useful for other random variables. The moment generating function, discussed after Problem 1, is a much more useful concept.
3. Sums of Random Variables. A fair coin has sides labeled $\{1,3\}$. Suppose that you flip the coin three times and consider the random variables X_{1}, X_{2}, X_{3} defined by

$$
X_{i}=\text { the number that shows up on the } i \text { th coin flip. }
$$

(a) Compute $E\left[X_{1}\right], E\left[X_{2}\right]$ and $E\left[X_{3}\right]$.
(b) Let $X=X_{1}+X_{2}+X_{3}$ be the sum of the three numbers you get. Compute the probability mass function $P(X=k)$ and draw the probability histogram of X. [Hint: There is no shortcut. You must write down all 8 elements of the sample space.]
(c) Compute $E[X]$ using the pmf for X from part (b).
(d) Compute $E[X]$ using linearity and your answer from part (a).
(a): For any i we have $P\left(X_{i}=1\right)=1 / 2$ and $P\left(X_{i}=3\right)=1 / 2$, hence

$$
E\left[X_{i}\right]=1 P\left(X_{i}=1\right)+3 P\left(X_{i}=3\right)=1(1 / 2)+3(1 / 2)=2 .
$$

On average, we expect to see the number 2 on any particular coin flip. We will return to this in part (d).
(b): Consider the 8 elements of the sample space:

$$
S=\{111,113,131,311,133,313,331,333\} .
$$

Here are the corresponding values of X :

s	111	113	131	311	133	313	331	333
$X(s)$	3	5	5	5	7	7	7	9

Since the outcomes are equally likely (the coin is fair) we obtain the pmf table of X :

$$
\begin{array}{c|cccc}
k & 3 & 5 & 7 & 9 \\
\hline P(X=k) & \frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8}
\end{array}
$$

Here is the histogram:

[^0](c): We can see from the symmetry of the histogram that $E[X]=6$, but let's check it anyway:
\[

$$
\begin{aligned}
E[X] & =3 P(X=3)+5 P(X=5)+7 P(X=7)+9 P(X=9) \\
& =3(1 / 8)+5(3 / 8)+7(3 / 8)+9(1 / 8) \\
& =48 / 8 \\
& =6 .
\end{aligned}
$$
\]

(d): Instead of going through all the work in part (b) we could have computed the expected value directly from (a) using linearity. Recall that $X=X_{1}+X_{2}+X_{3}$ and $E\left[X_{1}\right]=E\left[X_{2}\right]=$ $E\left[X_{3}\right]=2$, hence

$$
E[X]=E\left[X_{1}\right]+E\left[X_{2}\right]+E\left[X_{3}\right]=2+2+2=6 .
$$

Remark: The advantage of linearity is that it can be extended to any number of coin flips. Suppose you flip the coin 100 times. Let X_{i} be the number you obtain on the i th flip and let $X=X_{1}+\cdots+X_{100}$ be the sum. Then the expected value of X is

$$
E[X]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{100}\right]=2+2+\cdots+2=2 \cdots 100=200 .
$$

On the other hand, the method in part (b) and (c) is quite hard to generalize. Indeed, the sample space for 100 coin flips has 2^{100} elements! You would need to be really clever to work out the pmf of X. And this becomes even harder with dice instead of coins.

Moral: Linearity of expectation is a powerful tool that allows us to ignore many details.
4. Roulette. A European roulette wheel has 37 pockets: 1 colored green, 18 colored red and 18 colored black. To play the game you pay $\$ 1$ and pick a color from $\{r, b, g\}$ (red, black, green). Then the croupier ${ }^{2}$ spins the wheel and observes which pocket a marble falls into. Your winnings are decided by the following rules:

- If you pick r and the marble lands in a red pocket you win $\$ 2$.
- If you pick b and the marble lands in a black pocket you win $\$ 2$.
- If you pick g and the marble lands in the green pocket you win $\$ 35$.
- Otherwise you get nothing.

Suppose that the 37 pockets are equally likely and let W be your winnings.
(a) Compute $E[W]$ if you pick r. [You get the same answer for color b.]
(b) Compute $E[W]$ if you pick g.
(c) Compute $E[W]$ if you pick from $\{r, b, g\}$ at random, each with probability $1 / 3$.
[Hint: In each case the random variable W has support $\{0,2,35\}$, hence you need to compute the probabilities $P(W=0), P(W=2)$ and $P(W=35)$.]
(a): Suppose that you pick red. Then the value of your winnings W is either 0 or 2. The probabilities are

$$
P(W=0)=19 / 37 \quad \text { and } \quad P(W=2)=18 / 37
$$

since 18 of the 37 slots are red and 19 slots are "not red". Hence your expected winnings are

$$
E[W]=0 P(W=0)+2 P(W=2)=0(19 / 37)+2(18 / 37)=36 / 37=\$ 0.973 .
$$

Remark: Your profit is winnings minus the cost to play: $W-1$. So your expected profit is

$$
E[W-1]=E[W]-1=1-0.973=-\$ 0.027 .
$$

[^1]We could also say that the house edge is 2.7%. On average, the casino will take 2.7% of your money each time you bet red.
(b): Suppose you pick green. Then the value of your winning W is either 0 or 35 . The probabilities are

$$
P(W=0)=36 / 37 \quad \text { and } \quad P(W=35)=1 / 37
$$

since 1 slot is green and 36 slots are "not green". Your expected winnings are

$$
E[W]=0(36 / 37)+35(1 / 37)=35 / 37=\$ 0.946 .
$$

Note that you win less money on average when you pick green than when you pick red or black. Don't be fooled!
(c): This one is trickier than I intended it to be. The goal is to compute the probabilities $P(W=0), P(W=2)$ and $P(W=35)$, since then we will obtain the expected value

$$
E[W]=0 P(W=0)+2 P(W=2)+35 P(W=35)
$$

So how can we compute the probabilities? Let's name three events:

$$
\begin{aligned}
& R=\text { you bet on red } \\
& B=\text { you bet on black, } \\
& G=\text { you bet on green }
\end{aligned}
$$

We have assumed that $P(R)=P(B)=P(G)=1 / 3$. We also know the values of the various conditional probabilities $P(\{W=k\} \mid R), P(\{W=k\} \mid B), P(\{W=k\} \mid G)$. These are just the numbers we computed in parts (a) and (b). Then since R, B, G divide the sample space we can use the Law of Total Probability:

$$
\begin{aligned}
P(W=k) & =P(\{W=k\} \cap R)+P(\{W=k\} \cap B)+P(\{W=k\} \cap G) \\
& =P(R) P(\{W=k\} \mid R)+P(B) P(\{W=k\} \mid B)+P(G) P(\{W=k\} \mid G) .
\end{aligned}
$$

For the three possible values of k we obtain

$$
\begin{aligned}
P(W=0) & =(1 / 3)(19 / 37)+(1 / 3)(19 / 37)+(1 / 3)(36 / 37)=74 / 111, \\
P(W=2) & =(1 / 3)(18 / 37)+(1 / 3)(18 / 37)+(1 / 3)(0 / 37)=36 / 111, \\
P(W=35) & =(1 / 3)(0 / 37)+(1 / 3)(0 / 37)+(1 / 3)(1 / 37)=1 / 111 .
\end{aligned}
$$

Hence the expected of your winnings is

$$
E[W]=0(74 / 111)+2(36 / 111)+35(1 / 111)=107 / 111=\$ 0.964 .
$$

Remark: You might have noticed that this answer can be obtained more easily by combining the answers from (a) and (b) in the following reasonable way:

$$
(1 / 3)(36 / 37)+(1 / 3)(36 / 37)+(1 / 3)(35 / 37)=107 / 111
$$

To explain why this is correct requires the concept of conditional expectation. Given a random variable X and an event A, we let $E[X \mid A]$ denote the expected value of X, assuming that A happens. Then it follows from a general property of conditional expectation that

$$
E[W]=P(R) E[W \mid R]+P(B) E[W \mid B]+P(G) E[W \mid G] .
$$

We won't study conditional expectation in this course.
Remark: You might find it easier to organize the information from part (c) in a tree diagram:

Here I have circled the branches corresponding to the event $W=0$. To obtain the probability $P(W=0)$ we add up the probabilities of these three branches:

$$
P(W=0)=(1 / 3)(19 / 37)+(1 / 3)(19 / 37)+(1 / 3)(36 / 37)=74 / 111 .
$$

5. Geometric Random Variables. Let X be a geometric random variable with parameters p and $q=1-p$, so that $P(X=k)=p q^{k-1} \mid 3$ We can interpret X as the number of coin flips until we see H for the first time, where $P(H)=p$. Let's assume that $p \neq 0$ so that $q<1$.
(a) Use the geometric series to verify that $\sum_{k} P(X=k)=1$.
(b) If $k \geq 1$, use the geometric series to prove that $P(X \geq k)=q^{k-1}$.
(c) Differentiate the geometric series to prove that $E[X]=1 / p$.

For any number $|q|<1$ the geometric series tells us that

$$
1+q+q^{3}+q^{4}+\cdots=1 /(1-q) .
$$

If we view both sides as functions of q then we can also differentiate to obtain ${ }^{4}$

$$
0+1+2 q+3 q^{2}+\cdots=1 /(1-q)^{2}
$$

In particular, both of these identities hold when q is the probability of tails and $q<1$.
(a): The sum of the probabilities is

$$
\sum_{k} P(X=k)=P(X=1)+P(X=2)+P(X=3)+\cdots
$$

[^2]\[

$$
\begin{aligned}
& =p+p q+p q^{2}+\cdots \\
& =p\left(1+q+q^{2}+\cdots\right) \\
& =p \cdot \frac{1}{1-q}=p \cdot \frac{1}{p}=1
\end{aligned}
$$
\]

(b): If $k \geq 1$ then we have

$$
\begin{aligned}
P(X \geq k) & =P(X=k)+P(X=k+1)+P(X=k+2)+\cdots \\
& =p q^{k-1}+p q^{k}+p q^{k+1}+\cdots \\
& =p q^{k-1}\left(1+q+q^{2}+\cdots\right) \\
& =p q^{k-1} \cdot \frac{1}{1-q}=p q^{k-1} \cdot \frac{1}{p}=q^{k-1}
\end{aligned}
$$

Note that part (a) is a special case of (b) when $k=1$.
(c): The expected value of X is

$$
\begin{aligned}
E[X] & =\sum_{k} k \cdot P(X=k) \\
& =1 P(X=1)+2 P(X=2)+3 P(X=3)+\cdots \\
& =1 p+2 p q+3 p q^{2}+\cdots \\
& =p\left(1+2 q+3 q^{2}+\cdots\right) \\
& =p \cdot \frac{1}{(1-q) 2}=p \cdot \frac{1}{p^{p}}=\frac{1}{p}
\end{aligned}
$$

6. The Coupon Collector Problem. Suppose that you roll a fair n-sided die until you see all n sides, and let X be the number of rolls that you did. In this problem I will guide you through a method to compute the expected number of rolls $E[X]$.
(a) Fix some $0 \leq k \leq n-1$ and suppose that you have already seen k sides of the die. Let X_{k} be the number of die rolls until you see one of the remaining $n-k$ sides. Compute $E\left[X_{k}\right]$. [Hint: This is a geometric random variable. Think of the die as a coin with $T=$ "you see one of the k sides that you've already seen" and $H=$ "you see one of the $n-k$ sides that you haven't seen yet". Use Problem 5(c).]
(b) We observe that $X=X_{0}+X_{1}+\cdots+X_{n-1}$ is the total number of rolls until you see all n sides of the die. Use part (a) and linearity of expectation to compute $E[X]$.
(c) Example: Suppose that you roll a fair 6 -sided die until you see all six sides. On average, how many rolls do you expect to make?

Idea: We express X as a sum $X=X_{0}+X_{1}+\cdots+X_{n-1}$, where X_{k} is how long we have to wait between seeing k faces and $k+1$ faces of the die. It turns out that the expected value of X_{k} is easy to compute.
(a): Assuming we have already seen k faces of the die, let X_{k} be the number of die rolls until we see one of the remaining $n-k$ faces. We can think of each roll as a coin flip with $T=$ we see one the k faces we've already seen and $H=$ we see one of the $n-k$ faces that we haven't seen yet. Since $P(H)=(n-k) / n$, Problem $5(\mathrm{c})$ tells us that

$$
E\left[X_{k}\right]=\frac{1}{P(H)}=\frac{1}{(n-k) / n}=\frac{n}{n-k}
$$

(b): Then we use the linearity of expectation to obtain

$$
\begin{aligned}
E[X] & =E\left[X_{0}\right]+E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n-1}\right] \\
& =\frac{n}{n-0}+\frac{n}{n-1}+\frac{n}{n-2}+\cdots+\frac{n}{1} .
\end{aligned}
$$

Apart from factoring out n, this formula does not simplify.
(c): Let X be the number of die rolls until you see every side of a fair 6 -sided die. Then

$$
\begin{aligned}
E[X] & =\frac{6}{6}+\frac{6}{5}+\frac{6}{4}+\frac{6}{3}+\frac{6}{2}+\frac{6}{1} \\
& =1+1.2+1.5+2+3+6 \\
& =14.7 .
\end{aligned}
$$

This is a testable prediction.

[^0]: ${ }^{1}$ The proof using linearity and expressing X as a sum of Bernoulli random variables is much more intuitive and much more useful for other situations.

[^1]: ${ }^{2}$ The person who spins the wheel.

[^2]: ${ }^{3}$ We can think of X as the number of coin flips until we see heads.
 ${ }^{4}$ The derivative of $(1-q)^{-1}$ is $(-1)(1-q)^{-2}(0-1)=(1-q)^{-2}$.

