This is a closed book test. You may use a basic scientific calculator. There are 5 pages and 5 problems, each worth 6 points, for a total of 30 points.

Problem 1. Let $X$ be a continuous random variable with the following density function:

$$
f_{X}(x)= \begin{cases}c(x-1) & 1<x<2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of the constant $c$.

The total area under a probability density is 1 :

$$
1=\int_{1}^{2} c(x-1) d x=c\left[\frac{x^{2}}{2}-x\right]_{1}^{2}=c[(4 / 2-2)-(1 / 2-1)]=c / 2 .
$$

Hence we must have $c=2$.
(b) Compute the expected value $E[X]$.

The expected value is

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{\infty} x \cdot f_{X}(x) d x \\
& =\int_{1}^{2} x \cdot 2(x-1) d x \\
& =\int_{1}^{2} 2\left(x^{2}-x\right) d x \\
& =2\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{1}^{2} \\
& =2[(8 / 3-4 / 2)-(1 / 3-1 / 2)]=5 / 3
\end{aligned}
$$

(c) Compute the second moment $E\left[X^{2}\right]$ and the variance $\operatorname{Var}(X)$.

The second moment is

$$
\begin{aligned}
E\left[X^{2}\right] & =\int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) d x \\
& =\int_{1}^{2} x^{2} \cdot 2(x-1) d x \\
& =\int_{1}^{2} 2\left(x^{3}-x^{2}\right) d x \\
& =2\left[\frac{x^{4}}{4}-\frac{x^{3}}{3}\right]_{1}^{2} \\
& =2[(16 / 4-8 / 3)-(1 / 4-1 / 3)]=17 / 6 .
\end{aligned}
$$

Hence the variance is

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=(17 / 6)-(5 / 3)^{2}=1 / 18 .
$$

Problem 2. Let $Z \sim N(0,1)$ be a standard normal random variable. Use the attached tables to solve the following problems.
(a) Find $\alpha$ such that $P(Z<0.75)=\alpha$ and draw a picture to illustrate your answer.

(b) Find $a$ such that $P(Z>a)=10 \%$ and draw a picture to illustrate your answer.

(c) Find $b$ such that $P(|Z|>b)=25 \%$ and draw a picture to illustrate your answer.


Problem 3. Let $X_{1}, \ldots, X_{16}$ be an iid sample from a distribution with unknown mean $\mu$ and variance $\sigma^{2}$. Consider the sample mean:

$$
\bar{X}=\frac{1}{16}\left(X_{1}+X_{2}+\cdots+X_{16}\right)
$$

(a) Compute the expected value of the sample mean, $E[\bar{X}]$. [Hint: Use linearity.]

$$
\begin{aligned}
E[\bar{X}] & =\frac{1}{16}\left(E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{16}\right]\right) \\
& =\frac{1}{16} \underbrace{(\mu+\mu+\cdots+\mu)}_{16 \text { times }}=\mu
\end{aligned}
$$

(b) Compute the variance of the sample mean, $\operatorname{Var}(\bar{X}) .\left[\right.$ Hint: The $X_{i}$ are independent.]

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =\frac{1}{16^{2}}\left(\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{16}\right)\right) \\
& =\frac{1}{16^{2}} \underbrace{\left(\sigma^{2}+\sigma^{2}+\cdots+\sigma^{2}\right)}_{16 \text { times }}=\frac{\sigma^{2}}{16}
\end{aligned}
$$

(c) Use the Central Limit Theorem to estimate $P(\mu-0.1 \sigma<\bar{X}<\mu+0.1 \sigma)$. [Hint: Yes, this is possible. The unknown values of $\mu$ and $\sigma$ will cancel out.]

The CLT says that $\bar{X}$ is approximately normal. Since $E[\bar{X}]=\mu$ and $\operatorname{Var}(\bar{X})=$ $\sigma^{2} / 16$, this tells us that $(\bar{X}-\mu) / \sqrt{\sigma^{2} / 16}=(\bar{X}-\mu) /(\sigma / 4)=4(\bar{X}-\mu) / \sigma$ is approximately standard normal. Hence

$$
\begin{aligned}
P(\mu-0.1 \sigma<\bar{X}<\mu+0.1 \sigma) & =P(-0.1 \sigma<\bar{X}-\mu<0.1 \sigma) \\
& =P\left(-0.1<\frac{\bar{X}-\mu}{\sigma}<0.1\right) \\
& =P\left(-0.4<\frac{4(\bar{X}-\mu)}{\sigma}<0.4\right) \\
& \approx \Phi(0.4)-\Phi(-0.4) \\
& =\Phi(0.4)-(1-\Phi(0.4)) \\
& =2 \cdot \Phi(0.4)-1 \\
& =2(0.6554)-1 \\
& \approx 31.08 \%
\end{aligned}
$$

Problem 4. There are 5 different colors of Skittles. Let $p$ be the unknown proportion of red Skittles in a very large bag of Skittles. In order to estimate $p$ you took a sample of $n=100$ Skittles from the bag and found that $Y=25$ were red. Use the attached table to solve the following problems.
(a) Compute a symmetric two-sided $95 \%$ confidence interval for the unknown $p$.

The general form ${ }^{11}$ of the interval is

$$
\begin{aligned}
& \quad|p-\hat{p}|
\end{aligned} \quad<z_{\alpha / 2} \cdot \sqrt{\hat{p}(1-\hat{p}) / n}{ }^{\text {or } \quad \text { " } p}=\hat{p} \pm z_{\alpha / 2} \cdot \sqrt{\hat{p}(1-\hat{p}) / n} \text { ". }
$$

In our case we have $\alpha=5 \%$, so that $z_{\alpha / 2}=z_{2.5 \%}=1.96$. We also have $\hat{p}=Y / n=$ $25 / 100=1 / 4$, so our confidence interval is

$$
\begin{aligned}
p & =1 / 4 \pm 1.96 \cdot \sqrt{(1 / 4)(3 / 4) / 100} \\
& =0.25 \pm 0.085 \\
& =25 \% \pm 8.5 \% .
\end{aligned}
$$

(b) Test the hypothesis $H_{0}=$ " $p=1 / 5$ " against the alternative $H_{1}=$ " $p>1 / 5$ " at the $5 \%$ level of significance.

The rejection region for a general one-sided test is

$$
\hat{p}>p_{0}+z_{\alpha} \cdot \sqrt{p_{0}\left(1-p_{0}\right) / n}
$$

In our case we have $\alpha=5 \%$, so that $z_{\alpha}=z_{5 \%}=1.645$, and $p_{0}=1 / 5$. So our rejection region is

$$
\begin{aligned}
\hat{p} & >1 / 5+1.645 \cdot \sqrt{(1 / 5)(2 / 5) / 100} \\
& =0.2+0.0658 \\
& =0.2658
\end{aligned}
$$

In other words, any value of $\hat{p}$ greater than 0.2658 should cause us to reject the hypothesis " $p=1 / 5$ " in favor of " $p>1 / 5$ " at the $5 \%$ level of significance. In our case we had $\hat{p}=0.25$, so we fail to reject the hypothesis " $p=1 / 5$ ".

Problem 5. Suppose that the following iid sample comes from a normal distribution with unknown mean $\mu$ and variance $\sigma^{2}$ :

| 1.0 | 2.0 | 3.0 | 4.0 |
| :--- | :--- | :--- | :--- |

Use the attached table to solve the following problems.
(a) Compute a symmetric two-sided $95 \%$ confidence interval for the unknown $\mu$.

Let $X$ be the unknown distribution from which the sample was drawn. The general form ${ }^{2}$ of the confidence interval is

$$
\begin{aligned}
\quad|\mu-\bar{X}| & <t_{\alpha / 2}(n-1) \cdot \sqrt{S^{2} / n} \\
\text { or } \quad " \mu & =\bar{X} \pm t_{\alpha / 2}(n-1) \cdot \sqrt{S^{2} / n} " .
\end{aligned}
$$

[^0]In our case we have $\alpha=5 \%$ and $n=4$, so that $t_{\alpha / 2}(n-1)=t_{2.5 \%}(3)=3.182$. The sample mean and sample variance are computed as follows:

$$
\begin{aligned}
\bar{X} & =\frac{1}{4}(1+2+3+4)=5 / 2, \\
S^{2} & =\frac{1}{3}\left((1-5 / 2)^{2}+(2-5 / 2)^{2}+(3-5 / 2)^{2}+(4-5 / 2)^{2}\right)=5 / 3 .
\end{aligned}
$$

Hence our confidence interval is

$$
\begin{aligned}
\mu & =5 / 2 \pm 3.182 \cdot \sqrt{(5 / 3) / 4} \\
& =2.5 \pm 2.054 .
\end{aligned}
$$

That's not great, but what do you expect with only four data points?
(b) Test the hypothesis $H_{0}=$ " $\mu=4$ " against the alternative $H_{1}=$ " $\mu<4$ " at the $5 \%$ level of significance.

The rejection region for a general one-sided test is

$$
\bar{X}<\mu_{0}-t_{\alpha}(n-1) \cdot \sqrt{S^{2} / n}
$$

In our case we have $\alpha=5 \%$ and $n=4$ so that $t_{\alpha}(n-1)=t_{5 \%}(3)=2.353$, and we have $\mu_{0}=4$. So our rejection region is

$$
\begin{aligned}
\bar{X} & <4-2.353 \cdot \sqrt{(5 / 3) / 4} \\
& =4-1.52 \\
& =2.48 .
\end{aligned}
$$

In other words, any value of $\bar{X}$ less than 2.48 should cause us to reject the hypothesis " $\mu=4$ " in favor of " $\mu<4$ " at the $5 \%$ level of significance. In our case we have $\bar{X}=2.5$, which is not less than 2.48 , so we fail to reject the hypothesis " $\mu=4$ ". You might object and say that the true mean is surely less than 4, but we can't be $95 \%$ confident about this because of the small sample size.


[^0]:    ${ }^{1}$ This is just the most basic form. It can be made more accurate in various ways.
    ${ }^{2}$ This will be accurate only to the extent that $X$ has a normal distribution.

