This is a closed book test. No electronic devices are allowed. There are 5 pages and 5 problems, each worth 6 points, for a total of 30 points.

Problem 1. Let X be a random variable with the following pmf table:

k	-1	0	1	2
$P(X=k)$	$3 / 8$	$2 / 8$	$2 / 8$	$1 / 8$

(a) Compute $E[X]$.

$$
E[X]=(-1) \frac{3}{8}+(0) \frac{2}{8}+(1) \frac{2}{8}+(2) \frac{1}{8}=\frac{1}{8}
$$

(b) Compute $E\left[X^{2}\right]$ and $\operatorname{Var}(X)$.

$$
\begin{gathered}
E\left[X^{2}\right]=(-1)^{2} \frac{3}{8}+(0)^{2} \frac{2}{8}+(1)^{2} \frac{2}{8}+(2)^{2} \frac{1}{8}=\frac{9}{8} \\
\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=9 / 8-(1 / 8)^{2}=\frac{72}{64}-\frac{1}{64}=\frac{71}{64}
\end{gathered}
$$

(c) Use the formula for $E[g(X)]$ to compute $E\left[2^{X}\right]$.

$$
\begin{aligned}
E\left[2^{X}\right] & =2^{-1} \cdot \frac{3}{8}+2^{0} \cdot \frac{2}{8}+2^{1} \cdot \frac{2}{8}+2^{2} \cdot \frac{1}{8} \\
& =\frac{3}{16}+\frac{2}{8}+\frac{4}{8}+\frac{4}{8} \\
& =\frac{3}{16}+\frac{4}{8}+\frac{8}{16}+\frac{8}{16}=\frac{23}{16}
\end{aligned}
$$

Problem 2. Let X and Y be random variables with the following joint pmf table:

$X \backslash Y$	0	1	2	
-1	$2 / 8$	$1 / 8$	$2 / 8$	$5 / 8$
1	$1 / 8$	$2 / 8$	0	$3 / 8$
	$3 / 8$	$3 / 8$	$2 / 8$	

(a) Compute $E[X]$ and $E[Y]$.

$$
\begin{gathered}
E[X]=(-1) \frac{5}{8}+(1) \frac{3}{8}=-\frac{2}{8} \\
E[Y]=(0) \frac{3}{8}+(1) \frac{3}{8}+(2) \frac{2}{8}=\frac{7}{8}
\end{gathered}
$$

(b) Compute $E[X Y]$ and $\operatorname{Cov}(X, Y)$.

$$
\begin{aligned}
E[X Y]= & (-1)(0) \frac{2}{8}+(-1)(1) \frac{1}{8}+(-1)(2) \frac{2}{8} \\
& +(1)(0) \frac{1}{8}+(1)(1) \frac{2}{8}+(1)(2) \cdot 0 \\
= & -\frac{1}{8}-\frac{4}{8}+\frac{2}{8}=-\frac{3}{8}
\end{aligned}
$$

$$
\operatorname{Cov}(X, Y)=E[X Y]-E[X] \cdot E[Y]=-\frac{3}{8}-\left(-\frac{2}{8}\right)\left(\frac{7}{8}\right)=-\frac{24}{64}+\frac{14}{64}=-\frac{10}{64}
$$

(c) Compute the probability $P(X+Y=1)$.

$$
P(X+Y=1)=P(X=-1, Y=2)+P(X=1, Y=0)=\frac{2}{8}+\frac{1}{8}=\frac{3}{8}
$$

Problem 3. Let X, Y be random variables with the following moments:

$$
E[X]=1, \quad E\left[X^{2}\right]=3, \quad E[Y]=2, \quad E\left[Y^{2}\right]=5, \quad E[X Y]=1 .
$$

(a) Compute $\operatorname{Cov}(X, Y)$.

$$
\operatorname{Cov}(X, Y)=E[X Y]-E[X] \cdot E[Y]=1-1 \cdot 2=-1
$$

(b) Compute $E\left[(X+Y)^{2}\right]$. [Hint: Use linearity of expectation.]

$$
\begin{aligned}
E\left[(X+Y)^{2}\right] & =E\left[X^{2}+2 X Y+Y^{2}\right] \\
& =E\left[X^{2}\right]+2 \cdot E[X Y]+E\left[Y^{2}\right] \\
& =2+2 \cdot 1+5 \\
& =9
\end{aligned}
$$

(c) Compute $\operatorname{Var}(X-Y)$. [Hint: Use bilinearity of covariance.]

$$
\begin{aligned}
\operatorname{Var}(X-Y) & =\operatorname{Cov}(X-Y, X-Y) \\
& =\operatorname{Cov}(X, X)-2 \cdot \operatorname{Cov}(X, Y)+\operatorname{Cov}(Y, Y) \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \cdot \operatorname{Cov}(X, Y) \\
& =\left(E\left[X^{2}\right]-E[X]^{2}\right)+\left(E\left[Y^{2}\right]-E[Y]^{2}\right)-2 \cdot \operatorname{Cov}(X, Y) \\
& =\left(2-1^{2}\right)+\left(5-2^{2}\right)-2 \cdot(-1) \\
& =1+1+2 \\
& =4
\end{aligned}
$$

Remark: I changed this problem in the solutions to make it more meaningful to future readers. On the exam I gave

$$
E[X]=1, \quad E\left[X^{2}\right]=2, \quad E[Y]=2, \quad E\left[Y^{2}\right]=3, \quad E[X Y]=3,
$$

which is no good because it makes the variance of Y negative: $\operatorname{Var}(Y)=3-2^{2}=-1$. It also makes the variance of $X-Y$ negative: $\operatorname{Var}(X-Y)=-2$. I apologize for that.

Problem 4. Consider a coin with $P(H)=40 \%$.
(a) Suppose that you flip the coin 100 times and let X be the number of heads you get. Compute $E[X]$ and $\operatorname{Var}(X)$.

Here X is binomial with parameters $n=100$ and $p=4 / 10$, so that

$$
\begin{aligned}
E[X] & =n p=100(4 / 10)=40, \\
\operatorname{Var}(X) & =n p q=100(4 / 10)(6 / 10)=24 .
\end{aligned}
$$

(b) Suppose that you flip the coin until you see heads for the first time, and let Y be the number of flips that you did. Compute $P(Y=2)$ and $E[Y]$.

Here Y is geometric with parameter $p=4 / 10$, so that

$$
\begin{aligned}
P(Y=k) & =p q^{k-1} \\
P(Y=2) & =p q=(4 / 10)(6 / 10)=24 / 100 \\
E[Y] & =1 / p=10 / 4
\end{aligned}
$$

(c) Suppose that you flip the coin twice and define random variables X_{1}, X_{2} by

$$
X_{i}= \begin{cases}1 & \text { if the } i \text { th flip is heads } \\ 0 & \text { if the } i \text { th flip is tails }\end{cases}
$$

Compute $\operatorname{Var}\left(X_{1}+X_{2}\right)$.
Here X_{1} and X_{2} are Bernoulli with parameter $p=4 / 10$ / so that

$$
\operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(X_{2}\right)=p q=(4 / 10)(6 / 10)=24 / 100
$$

Then since X_{1} and X_{2} are independent we have

$$
\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)=24 / 100+24 / 100=48 / 100
$$

Alternatively, we can observe that $X_{1}+X_{2}$ (the number of heads in two coin flips) is binomial with parameters $n=2$ and $p=4 / 10$, so that

$$
\operatorname{Var}\left(X_{1}+X_{2}\right)=n p q=2(4 / 10)(6 / 10)=48 / 100
$$

Problem 5. Suppose that an urn contains 2 red balls, 3 green balls and 1 blue ball. Grab 2 balls without replacement and consider the following random variables:

$$
\begin{aligned}
& R=\text { the number of red balls you get }, \\
& G=\text { the number of green balls you get. }
\end{aligned}
$$

(a) Write down formulas for the joint probabilities $P(R=k, G=\ell)$ and the marginal probabilities $P(R=k)$ and $P(G=\ell)$.

We use the formulas for hypergeometric probability:

$$
\begin{gathered}
P(R=k)=\binom{2}{k}\binom{4}{2-k} /\binom{6}{2}, \\
P(G=\ell)=\binom{3}{\ell}\binom{3}{2-\ell} /\binom{6}{2}, \\
P(R=k, G=\ell)=\binom{2}{k}\binom{3}{\ell}\binom{1}{2-k-\ell} /\binom{6}{2} .
\end{gathered}
$$

(b) Fill in the joint pmf table, including the marginal probabilities:

To save space I will omit the denominator $\binom{6}{2}=15$ from each cell.

$R \backslash G$	0	1	2	
0	0	3	3	6
1	2	6	0	8
2	1	0	0	1
	3	9	3	15

Note that the marginal probabilities are equal to the corresponding row and column sums, and that the probabilities sum to 1 .

