
Math 224 Spring 2018
Homework 5 Drew Armstrong

1. Let U be the uniform random variable on the interval [2, 5]. Compute the following:

P (U = 0), P (U = 3), P (0 < U < 3), P (3 < U < 4.5), P (3 ≤ U ≤ 4.5).

The pdf of U is defined as follows:

fU (x) =

{
1/3 2 ≤ x ≤ 5,

0 otherwise.

Here is a picture:

Each desired probability is the area of a certain region under the curve. Fortunately each
region is a rectangle (sometimes with width or height equal to zero) so we don’t need to
compute any integrals. First we have a couple of rectangles of zero width:

P (U = 0) = (base)(height) = 0 · 0 = 0,

P (U = 3) = (base)(height) = 0 · 1/3 = 0,

In general we recall that P (U = k) = 0 for any k. Next we have a region with two different
heights:

P (0 < U < 3) = P (0 < U ≤ 2) + P (2 ≤ U < 3)

= (base)(height) + (base)(height)

= 1 · 0 + 1 · (1/3) = 1/3.

Finally, we have

P (3 < U < 4.5) = (base)(height) = 1.5 · (1/3) = 1/2

and

P (3 ≤ U ≤ 4.5) = P (U = 3) + P (3 < U < 4.5) + P (U = 4)

= 0 + P (3 < U < 4.5) + 0

= 1/2.



2. Let X be a continuous random variable with pdf defined as follows:

fX(x) =

{
c · x2 if 0 ≤ x ≤ 1,

0 otherwise.

(a) Compute the value of the constant c.

(b) Find the mean µ = E[X] and standard deviation σ =
√

Var(X).
(c) Compute the probability P (µ− σ ≤ X ≤ µ+ σ).
(d) Draw the graph of fX , showing the interval µ± σ in your picture.

(a) To find c we use the fact that the total area under a pdf equals 1. Thus we have

1 =

∫ ∞
−∞

fX(x) dx

=

∫ 1

0
c · x2 dx

= c · x
3

3

∣∣∣∣1
0

=
c

3
,

and it follows that c = 3.
(b) By definition, the first moment is

µ = E[X] =

∫ ∞
−∞

x · fX(x) dx

=

∫ 1

0
x · 3x2 dx

= 3 · x
4

4

∣∣∣∣1
0

=
3

4
.

Then the second moment is

E[X2] =

∫ ∞
−∞

x2 · fX(x) dx

=

∫ 1

0
x2 · 3x2 dx

= 3 · x
5

5

∣∣∣∣1
0

=
3

5
,

and hence

σ2 = Var(X) = E[X2]− E[X]2 = (3/5)− (3/4)2 = 3/80,

σ =
√

3/80 = 0.1936.

(c) We have

P (µ− σ ≤ X ≤ µ+ σ) = P (0.5564 ≤ X ≤ 0.9436)

=

∫ 0.9436

0.5564
3x2 dx

= 3 · x
3

3

∣∣∣∣0.9436
0.5564

= (0.9436)3 − (0.5564)3 = 66.80%.

(d) Here is a picture:



3. Let Z be a standard normal random variable, which is defined by the following pdf:

n(x) =
1√
2π
· e−x2/2.

Let Φ(z) be the associated cdf (cumulative density function), which is defined by

Φ(z) = P (Z ≤ z) =

∫ z

−∞
n(x) dx.

Use the attached table to compute the following probabilities:

(a) P (0 < Z < 0.5),
(b) P (Z < −0.5),
(c) P (Z > 1), P (Z > 2), P (Z > 3).
(d) P (|Z| < 1), P (|Z| < 2), P (|Z| < 3),

(a)

P (0 < Z < 0.5) = Φ(0.5)− Φ(0) = 0.6915− 0.5000 = 19.15%.

(b)

P (Z < −0.5) = Φ(−0.5) = 1− Φ(0.5) = 1− 0.6915 = 30.85%.

(c)

P (Z > 1) = 1− P (Z < 1) = 1− Φ(1) = 1− 0.8413 = 15.87%,

P (Z > 2) = 1− P (Z < 2) = 1− Φ(2) = 1− 0.9772 = 2.28%,

P (Z > 3) = 1− P (Z < 3) = 1− Φ(3) = 1− 0.9987 = 0.13%.

(d) For any positive c we have

P (|Z| < c) = P (−c < Z < c) = Φ(c)− Φ(−c) = Φ(c)− [1− Φ(c)] = 2 · Φ(c)− 1.



Thus we have

P (|Z| < 1) = 2 · Φ(1)− 1 = 2 · 0.8413− 1 = 68.26%,

P (|Z| < 2) = 2 · Φ(2)− 1 = 2 · 0.9772− 1 = 95.44%,

P (|Z| < 3) = 2 · Φ(3)− 1 = 2 · 0.9987− 1 = 99.74%.

4. Continuing from Problem 3, use the attached table to find numbers c, d ∈ R solving the
following equations:

(a) P (Z > c) = P (|Z| > d) = 2.5%,
(b) P (Z > c) = P (|Z| > d) = 5%,
(c) P (Z > c) = P (|Z| > d) = 10%.

For general positive c and d we have

P (Z > c) = α

1− P (Z < c) = α

1− Φ(c) = α

Φ(c) = 1− α

and

P (|Z| > d) = α

P (Z < −d) + P (Z > d) = α

Φ(−d) + 1− Φ(d) = α

[1− Φ(d)] + 1− Φ(d) = α

2 · [1− Φ(d)] = α

Φ(d) = 1− α

2
.

(a) Using a reverse table look-up gives

P (Z > c) = 2.5% ⇒ Φ(c) = 97.5% ⇒ c = 1.96

and

P (|Z| > d) = 2.5% ⇒ Φ(d) = 98.75% ⇒ d = 2.24.

(b) Using a reverse table look-up gives

P (Z > c) = 5% ⇒ Φ(c) = 95% ⇒ c = 1.65

and

P (|Z| > d) = 5% ⇒ Φ(d) = 97.5% ⇒ d = 1.96.

(c) Using a reverse table look-up gives

P (Z > c) = 10% ⇒ Φ(c) = 90% ⇒ c = 1.28

and

P (|Z| > d) = 10% ⇒ Φ(d) = 95% ⇒ d = 1.65.



5. Let X ∼ N(µ, σ2) be a normal random variable with mean µ and variance σ2. Let α, β ∈ R
be any constants such that α 6= 0 and consider the random variable

Y = αX + β.

(a) Show that E[Y ] = αµ+ β and Var(Y ) = α2σ2.
(b) Show that Y has a normal distribution N(αµ + β, α2σ2). In other words, show that

for all real numbers y1 ≤ y2 we have

P (y1 ≤ Y ≤ y2) =

∫ y2

y1

1√
2πα2σ2

· e−[y−(αµ+β)]
2/2α2σ2

dy.

[Hint: For all x1 ≤ x2 you may assume that

P (x1 ≤ X ≤ x2) =

∫ x2

x1

1√
2πσ2

· e−(x−µ)2/2σ2
dx.

Now use the substitution y = αx+ β.]

It follows from this problem that Z = (X−µ)/σ = 1
σX−

µ
σ has a standard normal distribution.

That is extremely useful.

(a) By general properties of E and Var we have

E[Y ] = E[αX + β] = αE[X] + β = αµ+ β

and

Var(Y ) = Var(αX + β) = α2Var(X) = α2σ2.

(b) To show that Y is normal we want to show for all real numbers y1 ≤ y2 that

(?) P (y1 ≤ Y ≤ y2) =

∫ y=y2

y=y1

1√
2πα2σ2

· e−(y−αµ−β)2/2α2σ2
dy.

To see this, we will use use the fact that X is normal to obtain1

P (y1 ≤ Y ≤ y2) = P (y1 ≤ αX + β ≤ y2)
= P (y1 − β ≤ αX ≤ y2 − β)

= P

(
y1 − β
α

≤ X ≤ y2 − β
α

)
=

∫ x=(y2−β)/α

x=(y1−β)/α

1√
2πσ2

· e−(x−µ)2/2σ2
dx.(∗)

Then to show that the expressions (∗) and (?) are equal we will make the substitution

y = αx+ β,

x = (y − β)/α,

dy = α · dx.

1In the third line here we will assume that α > 0. The proof for α < 0 is exactly the same except that it
will switch the limits of integration.



Finally, we observe that∫ y=y2

y=y1

1√
2πα2σ2

· e−(y−αµ−β)2/2a2σ2
dy =

∫ x=(y2−β)/α

x=(y1−β)/α

1√
2πα2σ2

· e−(αx+�β−αµ−�β)2/2α2σ2
α · dx

=

∫ x=(y2−β)/α

x=(y1−β)/α

�α√
2π��α2σ2

· e−��α2(x−µ)2/2��α2σ2
dx

=

∫ x=(y2−β)/α

x=(y1−β)/α

1√
2πσ2

· e−(x−µ)2/2σ2
dx

as desired.

6. The average weight of a bag of chips from a certain factory is 150 grams. Assume that the
weight is normally distributed with a standard deviation of 12 grams.

(a) What is the probability that a given bag of chips has weight greater than 160 grams?
(b) Collect a random sample of 10 bags of chips and let Y be the number that have weight

greater than 160 grams. Compute the probability P (Y ≤ 2).

(a) Let X be the weight of a random bag of chips. We have assumed that X ∼ N(µ =
150, σ2 = 144). To compute the probability P (X > 160) we first standardize and then look
up the answer in a table of z-scores:

P (X > 160) = P (X − 150 > 10)

= P

(
X − 150

12
> 0.83

)
= 1− P

(
X − 150

12
≤ 0.83

)
= 1− Φ(0.83) = 1− 0.7967 = 20.33%.

(b) Now suppose that 10 bags are selected at random and let Y be the number with weight
greater than 160 grams. We can think of each bag of chips as a coin flip and from part (a) we
know that P (H) = 20.33%. Thus for any k we have

P (Y = k) =

(
10

k

)
(0.2033)k(0.7967)10−k.

My computer tells me that

P (Y ≤ 2) = P (Y = 0) + P (Y = 1) + P (Y = 2) = 66.78%.

7. Let X1, X2, . . . , X15 be independent and identically distributed (iid) random variables.
Suppose that each Xi has pdf defined by the following function:

f(x) =

{
3
2 · x

2 if −1 ≤ x ≤ 1,

0 otherwise.

(a) Compute E[Xi] and Var(Xi).
(b) Consider the sum Y = X1+X2+ · · ·+X15. Use part (a) to compute E[Y ] and Var(Y ).
(c) The Central Limit Theorem says that Y is approximately normal. Use this fact to

estimate the probability P (−0.3 ≤ Y ≤ 0.5).

(a) Here is a graph of the pdf of each individual Xi:



Since the distribution is symmetric about zero, we conclude without doing any work that
µ = E[Xi] = 0 for each i. To find σ, however, we need to compute an integral. For any i, the
variance of Xi is given by

σ2 = Var(Xi) = E
[
X2
i

]
− E[Xi]

2

= E[X2
i ]− 0

=

∫ ∞
−∞

x2 · f(x) dx− 0

=

∫ 1

−1
x2 · 3

2
x2 dx

=
3

2

∫ 1

−1
x4 dx

=
3

2
· x

5

5

∣∣∣∣1
−1

=
3

2
· 1

5
− 3

2
· (−1)5

5
=

6

10
=

3

5
.

(b) It follows that Y has mean and variance given by

µY = E[Y ] = E[X1] + E[X2] + · · ·+ E[X15] = 0 + 0 + · · ·+ 0 = 0

and

σ2Y = Var(Y ) = Var(X1) + Var(X2) + · · ·+ Var(X15) =
3

5
+

3

5
+ · · ·+ 3

5
= 15 · 3

5
= 9,

By the Central Limit Theorem, the sum Y is approximately normal and hence (Y −µY )/σY =
Y/3 is approximately standard normal. We conclude that

P (−0.3 ≤ Y ≤ 0.5) = P

(
−0.3

3
≤ Y

3
≤ 0.5

3

)
= P

(
−0.1 ≤ Y

3
≤ 0.17

)
≈ Φ(0.17)− Φ(−0.1)

= Φ(0.17)− [1− Φ(0.1)]

= Φ(0.17) + Φ(0.1)− 1

= 0.5675 + 0.5398− 1 = 10.73%.

8. Suppose that n = 48 seeds are planted and suppose that each seed has a probability
p = 75% of germinating. Let X be the number of seeds that germinate and use the Central



Limit Theorem to estimate the probability P (35 ≤ X ≤ 40) that between 35 and 40 seeds
germinate. Don’t forget to use a continuity correction.

We observe that X is a binomial random variable with the following pmf:

P (X = k) =

(
48

k

)
(0.75)k(0.25)48−k.

My laptop tells me that the exact probability is

P (35 ≤ X ≤ 40) =

40∑
k=35

P (X = k) =

40∑
k=35

(
48

k

)
(0.75)k(0.25)48−k = 63.74%.

To compute an approximation by hand we will use the de Moivre-Laplace Theorem, which
says that X is approximately normal with mean np = 36 and variance σ2 = np(1 − p) = 9,
i.e., standard deviation σ = 3. Let X ′ be a continuous random variable with X ′ ∼ N(36, 32).
Here is a picture comparing the probability mass function of the discrete variable X to the
probability density function of the continuous variable X ′:

The picture suggests that we should use the following continuity correction:2

P (35 ≤ X ≤ 40) ≈ P (34.5 ≤ X ′ ≤ 40.5).

And then because (X ′ − 36)/3 is standard normal we obtain

P (34.5 ≤ X ′ ≤ 40.5) = P (−1.5 ≤ X ′ − 36 ≤ 4.5)

= P

(
−0.5 ≤ X ′ − 36

3
≤ 1.5

)
= Φ(1.5)− Φ(−0.5)

= Φ(1.5)− [1− Φ(0.5)]

= Φ(1.5) + Φ(0.5)− 1 = 0.9332 + 0.6915− 1 = 62.47%

Not too bad.

9. Suppose that a six-sided die is rolled 24 times and let Xi be the number that shows up on
the i-th roll. Let X = (X1 +X2 + · · ·+X24)/24 be the average of the numbers that show up.

(a) Assuming that the die is fair, compute the expected value and variance:

E
[
X
]

and Var
(
X
)
.

2If you don’t do this then you will still get a reasonable answer, it just won’t be as accurate.



(b) Assuming that the die is fair, use the Central Limit Theorem to estimate the proba-
bility P

(
X ≥ 4

)
.

(c) Suppose you roll an unknown six-sided die 24 times and get an average value of 4.

Is the die fair?

In other words: Let H0 be the hypothesis that the die is fair. Should you reject this
hypothesis at the 5% level of significance?

(a) Let Xi be the number that shows up on the i-th roll. Then each Xi is identically distributed
with the following pmf:

k 1 2 3 4 5 6

P (Xi = k) 1/6 1/6 1/6 1/6 1/6 1/6

We compute from this table that

E[Xi] = (1 + 2 + 3 + 4 + 5 + 6)/6 = 7/2,

E[X2
i ] = (12 + 22 + 32 + 42 + 52 + 62)/6 = 91/6,

Var(Xi) = E[X2
i ]− E[Xi]

2 = 91/6− (7/2)2 = 35/12.

Now it follows that

E[X] =
1

24
· (E[X1] + · · ·E[X24])

=
1

24
· (3.5 + · · ·+ 3.5) =

1

24
· 24 · 3.5 = 3.5

and

Var(X) =
1

242
· (Var(X1) + · · ·Var(X24))

=
1

24
·
(

35

12
+ · · ·+ 35

12

)
=

1

242
· 24 · 35

12
=

1

24
· 35

12
,

and hence σ =
√

1
24 ·

35
12 = 0.3486.

(b) The Central Limit Theorem tells us that X is approximately normal with mean 3.5 and
standard deviation 0.3486. To compute the probability P (X > 4) we standardize then look
up the answer in a table of z-scores:

P (X > 4) = P (X − 3.5 > 0.5)

= P

(
X − 3.5

0.3486
> 1.43

)
= 1− Φ(1.43)

= 1− 0.9236

= 7.64%.

(c) How surprising is this? In order to determine if the die is fair suppose we roll the die
24 times and let X be the average of the 24 numbers that show up. Let µ = E[X] and



σ2 = Var(X) so that X is approximately N(µ, σ2). If the die is fair then we saw in parts (a)
and (b) that µ = 3.5 and σ = 0.3486. We will test the null hypothesis

H0 = “µ = 3.5”

against the two-sided alternative hypothesis

H1 = “µ 6= 3.5.”

At the 5% level of significance, the critical region for this test will be |X − 3.5| > c for some
number such that

P (|X − 3.5| > c) = 5%.

Assuming that H0 is true we know that (X − 3.5)/0.3486 is approximately standard normal
so we can solve for c by standardizing and then looking up in a table. We have

P

(∣∣∣∣X − 3.5

0.3486

∣∣∣∣ > c

0.3486

)
= 5%

and then from Exercise 4(b) we know that
c

0.3486
= 1.96 ⇒ c = 0.6834.

We will reject the null hypothesis when |X − 3.5| > 0.6834, or

−0.6834 < X − 3.5 < 0.6834

3.5− 0.6834 < X < 3.5 + 0.6834

2.82 < X < 4.18.

Here is a picture:

Finally, suppose we perform the experiment and get X = 4. Since this is not in the critical
region for the test, we do not reject H0. In other words,

The die might be fair.


