1. Let U be the uniform random variable on the interval $[2,5]$. Compute the following:

$$
P(U=0), \quad P(U=3), \quad P(0<U<3), \quad P(3<U<4.5), \quad P(3 \leq U \leq 4.5) .
$$

The pdf of U is defined as follows:

$$
f_{U}(x)= \begin{cases}1 / 3 & 2 \leq x \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

Here is a picture:

Each desired probability is the area of a certain region under the curve. Fortunately each region is a rectangle (sometimes with width or height equal to zero) so we don't need to compute any integrals. First we have a couple of rectangles of zero width:

$$
\begin{aligned}
& P(U=0)=(\text { base })(\text { height })=0 \cdot 0=0 \\
& P(U=3)=(\text { base })(\text { height })=0 \cdot 1 / 3=0
\end{aligned}
$$

In general we recall that $P(U=k)=0$ for any k. Next we have a region with two different heights:

$$
\begin{aligned}
P(0<U<3) & =P(0<U \leq 2)+P(2 \leq U<3) \\
& =(\text { base }) \text { (height })+(\text { base }) \text { (height) } \\
& =1 \cdot 0+1 \cdot(1 / 3)=1 / 3
\end{aligned}
$$

Finally, we have

$$
P(3<U<4.5)=(\text { base })(\text { height })=1.5 \cdot(1 / 3)=1 / 2
$$

and

$$
\begin{aligned}
P(3 \leq U \leq 4.5) & =P(U=3)+P(3<U<4.5)+P(U=4) \\
& =0+P(3<U<4.5)+0 \\
& =1 / 2
\end{aligned}
$$

2. Let X be a continuous random variable with pdf defined as follows:

$$
f_{X}(x)= \begin{cases}c \cdot x^{2} & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the value of the constant c.
(b) Find the mean $\mu=E[X]$ and standard deviation $\sigma=\sqrt{\operatorname{Var}(X)}$.
(c) Compute the probability $P(\mu-\sigma \leq X \leq \mu+\sigma)$.
(d) Draw the graph of f_{X}, showing the interval $\mu \pm \sigma$ in your picture.
(a) To find c we use the fact that the total area under a pdf equals 1 . Thus we have

$$
\begin{aligned}
1 & =\int_{-\infty}^{\infty} f_{X}(x) d x \\
& =\int_{0}^{1} c \cdot x^{2} d x \\
& =\left.c \cdot \frac{x^{3}}{3}\right|_{0} ^{1}=\frac{c}{3}
\end{aligned}
$$

and it follows that $c=3$.
(b) By definition, the first moment is

$$
\begin{aligned}
\mu=E[X] & =\int_{-\infty}^{\infty} x \cdot f_{X}(x) d x \\
& =\int_{0}^{1} x \cdot 3 x^{2} d x \\
& =\left.3 \cdot \frac{x^{4}}{4}\right|_{0} ^{1}=\frac{3}{4} .
\end{aligned}
$$

Then the second moment is

$$
\begin{aligned}
E\left[X^{2}\right] & =\int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) d x \\
& =\int_{0}^{1} x^{2} \cdot 3 x^{2} d x \\
& =\left.3 \cdot \frac{x^{5}}{5}\right|_{0} ^{1}=\frac{3}{5},
\end{aligned}
$$

and hence

$$
\begin{aligned}
\sigma^{2}=\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2}=(3 / 5)-(3 / 4)^{2}=3 / 80, \\
\sigma & =\sqrt{3 / 80}=0.1936 .
\end{aligned}
$$

(c) We have

$$
\begin{aligned}
P(\mu-\sigma \leq X \leq \mu+\sigma) & =P(0.5564 \leq X \leq 0.9436) \\
& =\int_{0.5564}^{0.9436} 3 x^{2} d x \\
& =\left.3 \cdot \frac{x^{3}}{3}\right|_{0.5564} ^{0.9436}=(0.9436)^{3}-(0.5564)^{3}=66.80 \% .
\end{aligned}
$$

(d) Here is a picture:

3. Let Z be a standard normal random variable, which is defined by the following pdf:

$$
n(x)=\frac{1}{\sqrt{2 \pi}} \cdot e^{-x^{2} / 2}
$$

Let $\Phi(z)$ be the associated cdf (cumulative density function), which is defined by

$$
\Phi(z)=P(Z \leq z)=\int_{-\infty}^{z} n(x) d x .
$$

Use the attached table to compute the following probabilities:
(a) $P(0<Z<0.5)$,
(b) $P(Z<-0.5)$,
(c) $P(Z>1), P(Z>2), P(Z>3)$.
(d) $P(|Z|<1), P(|Z|<2), P(|Z|<3)$,
(a)

$$
P(0<Z<0.5)=\Phi(0.5)-\Phi(0)=0.6915-0.5000=19.15 \% .
$$

(b)

$$
P(Z<-0.5)=\Phi(-0.5)=1-\Phi(0.5)=1-0.6915=30.85 \% .
$$

(c)

$$
\begin{aligned}
& P(Z>1)=1-P(Z<1)=1-\Phi(1)=1-0.8413=15.87 \% \\
& P(Z>2)=1-P(Z<2)=1-\Phi(2)=1-0.9772=2.28 \% \\
& P(Z>3)=1-P(Z<3)=1-\Phi(3)=1-0.9987=0.13 \%
\end{aligned}
$$

(d) For any positive c we have

$$
P(|Z|<c)=P(-c<Z<c)=\Phi(c)-\Phi(-c)=\Phi(c)-[1-\Phi(c)]=2 \cdot \Phi(c)-1 .
$$

Thus we have

$$
\begin{aligned}
& P(|Z|<1)=2 \cdot \Phi(1)-1=2 \cdot 0.8413-1=68.26 \%, \\
& P(|Z|<2)=2 \cdot \Phi(2)-1=2 \cdot 0.9772-1=95.44 \%, \\
& P(|Z|<3)=2 \cdot \Phi(3)-1=2 \cdot 0.9987-1=99.74 \% .
\end{aligned}
$$

4. Continuing from Problem 3, use the attached table to find numbers $c, d \in \mathbb{R}$ solving the following equations:
(a) $P(Z>c)=P(|Z|>d)=2.5 \%$,
(b) $P(Z>c)=P(|Z|>d)=5 \%$,
(c) $P(Z>c)=P(|Z|>d)=10 \%$.

For general positive c and d we have

$$
\begin{aligned}
P(Z>c) & =\alpha \\
1-P(Z<c) & =\alpha \\
1-\Phi(c) & =\alpha \\
\Phi(c) & =1-\alpha
\end{aligned}
$$

and

$$
\begin{aligned}
P(|Z|>d) & =\alpha \\
P(Z<-d)+P(Z>d) & =\alpha \\
\Phi(-d)+1-\Phi(d) & =\alpha \\
{[1-\Phi(d)]+1-\Phi(d) } & =\alpha \\
2 \cdot[1-\Phi(d)] & =\alpha \\
\Phi(d) & =1-\frac{\alpha}{2} .
\end{aligned}
$$

(a) Using a reverse table look-up gives

$$
P(Z>c)=2.5 \% \quad \Rightarrow \quad \Phi(c)=97.5 \% \quad \Rightarrow \quad c=1.96
$$

and

$$
P(|Z|>d)=2.5 \% \quad \Rightarrow \quad \Phi(d)=98.75 \% \quad \Rightarrow \quad d=2.24
$$

(b) Using a reverse table look-up gives

$$
P(Z>c)=5 \% \quad \Rightarrow \quad \Phi(c)=95 \% \quad \Rightarrow \quad c=1.65
$$

and

$$
P(|Z|>d)=5 \% \quad \Rightarrow \quad \Phi(d)=97.5 \% \quad \Rightarrow \quad d=1.96
$$

(c) Using a reverse table look-up gives

$$
P(Z>c)=10 \% \quad \Rightarrow \quad \Phi(c)=90 \% \quad \Rightarrow \quad c=1.28
$$

and

$$
P(|Z|>d)=10 \% \quad \Rightarrow \quad \Phi(d)=95 \% \quad \Rightarrow \quad d=1.65
$$

5. Let $X \sim N\left(\mu, \sigma^{2}\right)$ be a normal random variable with mean μ and variance σ^{2}. Let $\alpha, \beta \in \mathbb{R}$ be any constants such that $\alpha \neq 0$ and consider the random variable

$$
Y=\alpha X+\beta
$$

(a) Show that $E[Y]=\alpha \mu+\beta$ and $\operatorname{Var}(Y)=\alpha^{2} \sigma^{2}$.
(b) Show that Y has a normal distribution $N\left(\alpha \mu+\beta, \alpha^{2} \sigma^{2}\right)$. In other words, show that for all real numbers $y_{1} \leq y_{2}$ we have

$$
P\left(y_{1} \leq Y \leq y_{2}\right)=\int_{y_{1}}^{y_{2}} \frac{1}{\sqrt{2 \pi \alpha^{2} \sigma^{2}}} \cdot e^{-[y-(\alpha \mu+\beta)]^{2} / 2 \alpha^{2} \sigma^{2}} d y .
$$

[Hint: For all $x_{1} \leq x_{2}$ you may assume that

$$
P\left(x_{1} \leq X \leq x_{2}\right)=\int_{x_{1}}^{x_{2}} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x .
$$

Now use the substitution $y=\alpha x+\beta$.]
It follows from this problem that $Z=(X-\mu) / \sigma=\frac{1}{\sigma} X-\frac{\mu}{\sigma}$ has a standard normal distribution. That is extremely useful.
(a) By general properties of E and Var we have

$$
E[Y]=E[\alpha X+\beta]=\alpha E[X]+\beta=\alpha \mu+\beta
$$

and

$$
\operatorname{Var}(Y)=\operatorname{Var}(\alpha X+\beta)=\alpha^{2} \operatorname{Var}(X)=\alpha^{2} \sigma^{2} .
$$

(b) To show that Y is normal we want to show for all real numbers $y_{1} \leq y_{2}$ that

$$
\begin{equation*}
P\left(y_{1} \leq Y \leq y_{2}\right)=\int_{y=y_{1}}^{y=y_{2}} \frac{1}{\sqrt{2 \pi \alpha^{2} \sigma^{2}}} \cdot e^{-(y-\alpha \mu-\beta)^{2} / 2 \alpha^{2} \sigma^{2}} d y . \tag{?}
\end{equation*}
$$

To see this, we will use use the fact that X is normal to obtain ${ }^{11}$

$$
\begin{align*}
P\left(y_{1} \leq Y \leq y_{2}\right) & =P\left(y_{1} \leq \alpha X+\beta \leq y_{2}\right) \\
& =P\left(y_{1}-\beta \leq \alpha X \leq y_{2}-\beta\right) \\
& =P\left(\frac{y_{1}-\beta}{\alpha} \leq X \leq \frac{y_{2}-\beta}{\alpha}\right) \\
& =\int_{x=\left(y_{1}-\beta\right) / \alpha}^{x=\left(y_{2}-\beta\right) / \alpha} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x . \tag{*}
\end{align*}
$$

Then to show that the expressions $(*)$ and (?) are equal we will make the substitution

$$
\begin{aligned}
y & =\alpha x+\beta, \\
x & =(y-\beta) / \alpha, \\
d y & =\alpha \cdot d x .
\end{aligned}
$$

[^0]Finally, we observe that

$$
\begin{aligned}
\int_{y=y_{1}}^{y=y_{2}} \frac{1}{\sqrt{2 \pi \alpha^{2} \sigma^{2}}} \cdot e^{-(y-\alpha \mu-\beta)^{2} / 2 \alpha^{2} \sigma^{2}} d y & =\int_{x=\left(y_{1}-\beta\right) / \alpha}^{x=\left(y_{2}-\beta\right) / \alpha} \frac{1}{\sqrt{2 \pi \alpha^{2} \sigma^{2}}} \cdot e^{-(\alpha x+\not \beta-\alpha \mu-\not)^{2} / 2 \alpha^{2} \sigma^{2}} \alpha \cdot d x \\
& =\int_{x=\left(y_{1}-\beta\right) / \alpha}^{x=\left(y_{2}-\beta\right) / \alpha} \frac{\alpha}{\sqrt{2 \pi \ell^{2} \sigma^{2}}} \cdot e^{-\not \alpha^{2 x}(x-\mu)^{2} / 2 \not \alpha^{2} \sigma^{2}} d x \\
& =\int_{x=\left(y_{1}-\beta\right) / \alpha}^{x=\left(y_{2}-\beta\right) / \alpha} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x
\end{aligned}
$$

as desired.
6. The average weight of a bag of chips from a certain factory is 150 grams. Assume that the weight is normally distributed with a standard deviation of 12 grams.
(a) What is the probability that a given bag of chips has weight greater than 160 grams?
(b) Collect a random sample of 10 bags of chips and let Y be the number that have weight greater than 160 grams. Compute the probability $P(Y \leq 2)$.
(a) Let X be the weight of a random bag of chips. We have assumed that $X \sim N(\mu=$ $\left.150, \sigma^{2}=144\right)$. To compute the probability $P(X>160)$ we first standardize and then look up the answer in a table of z-scores:

$$
\begin{aligned}
P(X>160) & =P(X-150>10) \\
& =P\left(\frac{X-150}{12}>0.83\right) \\
& =1-P\left(\frac{X-150}{12} \leq 0.83\right) \\
& =1-\Phi(0.83)=1-0.7967=20.33 \% .
\end{aligned}
$$

(b) Now suppose that 10 bags are selected at random and let Y be the number with weight greater than 160 grams. We can think of each bag of chips as a coin flip and from part (a) we know that $P(H)=20.33 \%$. Thus for any k we have

$$
P(Y=k)=\binom{10}{k}(0.2033)^{k}(0.7967)^{10-k}
$$

My computer tells me that

$$
P(Y \leq 2)=P(Y=0)+P(Y=1)+P(Y=2)=66.78 \% .
$$

7. Let $X_{1}, X_{2}, \ldots, X_{15}$ be independent and identically distributed (iid) random variables. Suppose that each X_{i} has pdf defined by the following function:

$$
f(x)= \begin{cases}\frac{3}{2} \cdot x^{2} & \text { if }-1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute $E\left[X_{i}\right]$ and $\operatorname{Var}\left(X_{i}\right)$.
(b) Consider the sum $Y=X_{1}+X_{2}+\cdots+X_{15}$. Use part (a) to compute $E[Y]$ and $\operatorname{Var}(Y)$.
(c) The Central Limit Theorem says that Y is approximately normal. Use this fact to estimate the probability $P(-0.3 \leq Y \leq 0.5)$.
(a) Here is a graph of the pdf of each individual X_{i} :

Since the distribution is symmetric about zero, we conclude without doing any work that $\mu=E\left[X_{i}\right]=0$ for each i. To find σ, however, we need to compute an integral. For any i, the variance of X_{i} is given by

$$
\begin{aligned}
\sigma^{2}=\operatorname{Var}\left(X_{i}\right) & =E\left[X_{i}^{2}\right]-E\left[X_{i}\right]^{2} \\
& =E\left[X_{i}^{2}\right]-0 \\
& =\int_{-\infty}^{\infty} x^{2} \cdot f(x) d x-0 \\
& =\int_{-1}^{1} x^{2} \cdot \frac{3}{2} x^{2} d x \\
& =\frac{3}{2} \int_{-1}^{1} x^{4} d x \\
& =\left.\frac{3}{2} \cdot \frac{x^{5}}{5}\right|_{-1} ^{1}=\frac{3}{2} \cdot \frac{1}{5}-\frac{3}{2} \cdot \frac{(-1)^{5}}{5}=\frac{6}{10}=\frac{3}{5} .
\end{aligned}
$$

(b) It follows that Y has mean and variance given by

$$
\mu_{Y}=E[Y]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{15}\right]=0+0+\cdots+0=0
$$

and

$$
\sigma_{Y}^{2}=\operatorname{Var}(Y)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{15}\right)=\frac{3}{5}+\frac{3}{5}+\cdots+\frac{3}{5}=15 \cdot \frac{3}{5}=9
$$

By the Central Limit Theorem, the sum Y is approximately normal and hence $\left(Y-\mu_{Y}\right) / \sigma_{Y}=$ $Y / 3$ is approximately standard normal. We conclude that

$$
\begin{aligned}
P(-0.3 \leq Y \leq 0.5) & =P\left(\frac{-0.3}{3} \leq \frac{Y}{3} \leq \frac{0.5}{3}\right) \\
& =P\left(-0.1 \leq \frac{Y}{3} \leq 0.17\right) \\
& \approx \Phi(0.17)-\Phi(-0.1) \\
& =\Phi(0.17)-[1-\Phi(0.1)] \\
& =\Phi(0.17)+\Phi(0.1)-1 \\
& =0.5675+0.5398-1=10.73 \%
\end{aligned}
$$

8. Suppose that $n=48$ seeds are planted and suppose that each seed has a probability $p=75 \%$ of germinating. Let X be the number of seeds that germinate and use the Central

Limit Theorem to estimate the probability $P(35 \leq X \leq 40)$ that between 35 and 40 seeds germinate. Don't forget to use a continuity correction.

We observe that X is a binomial random variable with the following pmf:

$$
P(X=k)=\binom{48}{k}(0.75)^{k}(0.25)^{48-k}
$$

My laptop tells me that the exact probability is

$$
P(35 \leq X \leq 40)=\sum_{k=35}^{40} P(X=k)=\sum_{k=35}^{40}\binom{48}{k}(0.75)^{k}(0.25)^{48-k}=63.74 \%
$$

To compute an approximation by hand we will use the de Moivre-Laplace Theorem, which says that X is approximately normal with mean $n p=36$ and variance $\sigma^{2}=n p(1-p)=9$, i.e., standard deviation $\sigma=3$. Let X^{\prime} be a continuous random variable with $X^{\prime} \sim N\left(36,3^{2}\right)$. Here is a picture comparing the probability mass function of the discrete variable X to the probability density function of the continuous variable X^{\prime} :

The picture suggests that we should use the following continuity correction 2^{2}

$$
P(35 \leq X \leq 40) \approx P\left(34.5 \leq X^{\prime} \leq 40.5\right)
$$

And then because $\left(X^{\prime}-36\right) / 3$ is standard normal we obtain

$$
\begin{aligned}
P\left(34.5 \leq X^{\prime} \leq 40.5\right) & =P\left(-1.5 \leq X^{\prime}-36 \leq 4.5\right) \\
& =P\left(-0.5 \leq \frac{X^{\prime}-36}{3} \leq 1.5\right) \\
& =\Phi(1.5)-\Phi(-0.5) \\
& =\Phi(1.5)-[1-\Phi(0.5)] \\
& =\Phi(1.5)+\Phi(0.5)-1=0.9332+0.6915-1=62.47 \%
\end{aligned}
$$

Not too bad.
9. Suppose that a six-sided die is rolled 24 times and let X_{i} be the number that shows up on the i-th roll. Let $\bar{X}=\left(X_{1}+X_{2}+\cdots+X_{24}\right) / 24$ be the average of the numbers that show up.
(a) Assuming that the die is fair, compute the expected value and variance:

$$
E[\bar{X}] \quad \text { and } \quad \operatorname{Var}(\bar{X})
$$

[^1](b) Assuming that the die is fair, use the Central Limit Theorem to estimate the probability $P(\bar{X} \geq 4)$.
(c) Suppose you roll an unknown six-sided die 24 times and get an average value of 4 .

Is the die fair?

In other words: Let H_{0} be the hypothesis that the die is fair. Should you reject this hypothesis at the 5% level of significance?
(a) Let X_{i} be the number that shows up on the i-th roll. Then each X_{i} is identically distributed with the following pmf:

k	1	2	3	4	5	6
$P\left(X_{i}=k\right)$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$

We compute from this table that

$$
\begin{aligned}
E\left[X_{i}\right] & =(1+2+3+4+5+6) / 6=7 / 2, \\
E\left[X_{i}^{2}\right] & =\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right) / 6=91 / 6, \\
\operatorname{Var}\left(X_{i}\right) & =E\left[X_{i}^{2}\right]-E\left[X_{i}\right]^{2}=91 / 6-(7 / 2)^{2}=35 / 12 .
\end{aligned}
$$

Now it follows that

$$
\begin{aligned}
E[\bar{X}] & =\frac{1}{24} \cdot\left(E\left[X_{1}\right]+\cdots E\left[X_{24}\right]\right) \\
& =\frac{1}{24} \cdot(3.5+\cdots+3.5)=\frac{1}{24} \cdot 24 \cdot 3.5=3.5
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =\frac{1}{24^{2}} \cdot\left(\operatorname{Var}\left(X_{1}\right)+\cdots \operatorname{Var}\left(X_{24}\right)\right) \\
& =\frac{1}{24} \cdot\left(\frac{35}{12}+\cdots+\frac{35}{12}\right)=\frac{1}{24^{2}} \cdot 24 \cdot \frac{35}{12}=\frac{1}{24} \cdot \frac{35}{12},
\end{aligned}
$$

and hence $\sigma=\sqrt{\frac{1}{24} \cdot \frac{35}{12}}=0.3486$.
(b) The Central Limit Theorem tells us that \bar{X} is approximately normal with mean 3.5 and standard deviation 0.3486 . To compute the probability $P(\bar{X}>4)$ we standardize then look up the answer in a table of z-scores:

$$
\begin{aligned}
P(\bar{X}>4) & =P(\bar{X}-3.5>0.5) \\
& =P\left(\frac{\bar{X}-3.5}{0.3486}>1.43\right) \\
& =1-\Phi(1.43) \\
& =1-0.9236 \\
& =7.64 \% .
\end{aligned}
$$

(c) How surprising is this? In order to determine if the die is fair suppose we roll the die 24 times and let \bar{X} be the average of the 24 numbers that show up. Let $\mu=E[\bar{X}]$ and
$\sigma^{2}=\operatorname{Var}(\bar{X})$ so that \bar{X} is approximately $N\left(\mu, \sigma^{2}\right)$. If the die is fair then we saw in parts (a) and (b) that $\mu=3.5$ and $\sigma=0.3486$. We will test the null hypothesis

$$
H_{0}=" \mu=3.5 "
$$

against the two-sided alternative hypothesis

$$
H_{1}=" \mu \neq 3.5 . "
$$

At the 5% level of significance, the critical region for this test will be $|\bar{X}-3.5|>c$ for some number such that

$$
P(|\bar{X}-3.5|>c)=5 \% .
$$

Assuming that H_{0} is true we know that $(\bar{X}-3.5) / 0.3486$ is approximately standard normal so we can solve for c by standardizing and then looking up in a table. We have

$$
P\left(\left|\frac{\bar{X}-3.5}{0.3486}\right|>\frac{c}{0.3486}\right)=5 \%
$$

and then from Exercise 4(b) we know that

$$
\frac{c}{0.3486}=1.96 \quad \Rightarrow \quad c=0.6834
$$

We will reject the null hypothesis when $|\bar{X}-3.5|>0.6834$, or

$$
\begin{array}{rllc}
-0.6834 & <\bar{X}-3.5 & <0.6834 \\
3.5-0.6834 & <\bar{X} & <3.5+0.6834 \\
2.82 & <\bar{X} & < & 4.18 .
\end{array}
$$

Here is a picture:

Finally, suppose we perform the experiment and get $\bar{X}=4$. Since this is not in the critical region for the test, we do not reject H_{0}. In other words,

The die might be fair.

[^0]: ${ }^{1}$ In the third line here we will assume that $\alpha>0$. The proof for $\alpha<0$ is exactly the same except that it will switch the limits of integration.

[^1]: ${ }^{2}$ If you don't do this then you will still get a reasonable answer, it just won't be as accurate.

