1. Let U be the uniform random variable on the interval $[2,5]$. Compute the following:

$$
P(U=0), \quad P(U=3), \quad P(0<U<3), \quad P(3<U<4.5), \quad P(3 \leq U \leq 4.5) .
$$

2. Let X be a continuous random variable with pdf defined as follows:

$$
f_{X}(x)= \begin{cases}c \cdot x^{2} & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the value of the constant c.
(b) Find the mean $\mu=E[X]$ and standard deviation $\sigma=\sqrt{\operatorname{Var}(X)}$.
(c) Compute the probability $P(\mu-\sigma \leq X \leq \mu+\sigma)$.
(d) Draw the graph of f_{X}, showing the interval $\mu \pm \sigma$ in your picture.
3. Let Z be a standard normal random variable, which is defined by the following pdf:

$$
n(x)=\frac{1}{\sqrt{2 \pi}} \cdot e^{-x^{2} / 2}
$$

Let $\Phi(z)$ be the associated cdf (cumulative density function), which is defined by

$$
\Phi(z)=P(Z \leq z)=\int_{-\infty}^{z} n(x) d x .
$$

Use the attached table to compute the following probabilities:
(a) $P(0<Z<0.5)$,
(b) $P(Z<-0.5)$,
(c) $P(Z>1), P(Z>2), P(Z>3)$.
(d) $P(|Z|<1), P(|Z|<2), P(|Z|<3)$,
4. Continuing from Problem 3, use the attached table to find numbers $c, d \in \mathbb{R}$ solving the following equations:
(a) $P(Z>c)=P(|Z|>d)=2.5 \%$,
(b) $P(Z>c)=P(|Z|>d)=5 \%$,
(c) $P(Z>c)=P(|Z|>d)=10 \%$.
5. Let $X \sim N\left(\mu, \sigma^{2}\right)$ be a normal random variable with mean μ and variance σ^{2}. Let $\alpha, \beta \in \mathbb{R}$ be any constants such that $\alpha \neq 0$ and consider the random variable

$$
Y=\alpha X+\beta .
$$

(a) Show that $E[Y]=\alpha \mu+\beta$ and $\operatorname{Var}(Y)=\alpha^{2} \sigma^{2}$.
(b) Show that Y has a normal distribution $N\left(\alpha \mu+\beta, \alpha^{2} \sigma^{2}\right)$. In other words, show that for all real numbers $y_{1} \leq y_{2}$ we have

$$
P\left(y_{1} \leq Y \leq y_{2}\right)=\int_{y_{1}}^{y_{2}} \frac{1}{\sqrt{2 \pi \alpha^{2} \sigma^{2}}} \cdot e^{-[y-(\alpha \mu+\beta)]^{2} / 2 \alpha^{2} \sigma^{2}} d y .
$$

[Hint: For all $x_{1} \leq x_{2}$ you may assume that

$$
P\left(x_{1} \leq X \leq x_{2}\right)=\int_{x_{1}}^{x_{2}} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x .
$$

Now use the substitution $y=\alpha x+\beta$.]
It follows from this problem that $Z=(X-\mu) / \sigma=\frac{1}{\sigma} X-\frac{\mu}{\sigma}$ has a standard normal distribution. That is extremely useful.
6. The average weight of a bag of chips from a certain factory is 150 grams. Assume that the weight is normally distributed with a standard deviation of 12 grams.
(a) What is the probability that a given bag of chips has weight greater than 160 grams?
(b) Collect a random sample of 10 bags of chips and let Y be the number that have weight greater than 160 grams. Compute the probability $P(Y \leq 2)$.
7. Let $X_{1}, X_{2}, \ldots, X_{15}$ be independent and identically distributed (i.i.d.) random variables. Suppose that each X_{i} has pdf defined by the following function:

$$
f(x)= \begin{cases}\frac{3}{2} \cdot x^{2} & \text { if }-1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute $E\left[X_{i}\right]$ and $\operatorname{Var}\left(X_{i}\right)$.
(b) Consider the sum $Y=X_{1}+X_{2}+\cdots+X_{15}$. Use part (a) to compute $E[Y]$ and $\operatorname{Var}(Y)$.
(c) The Central Limit Theorem says that Y is approximately normal. Use this fact to estimate the probability $P(-0.3 \leq Y \leq 0.5)$.
8. Suppose that $n=48$ seeds are planted and suppose that each seed has a probability $p=75 \%$ of germinating. Let X be the number of seeds that germinate and use the Central Limit Theorem to estimate the probability $P(35 \leq X \leq 40)$ that between 35 and 40 seeds germinate. Don't forget to use a continuity correction.
9. Suppose that a six-sided die is rolled 24 times and let X_{k} be the number that shows up on the k th roll. Let $\bar{X}=\left(X_{1}+X_{2}+\cdots+X_{24}\right) / 24$ be the average of the numbers that show up.
(a) Assuming that the die is fair, compute the expected value and variance:

$$
E[\bar{X}] \quad \text { and } \quad \operatorname{Var}(\bar{X}) .
$$

(b) Assuming that the die is fair, use the Central Limit Theorem to estimate the probability $P(\bar{X} \geq 4)$.
(c) Suppose you roll an unknown six-sided die 24 times and get an average value of 4 .

Is the die fair?
In other words: Let H_{0} be the hypothesis that the die is fair. Should you reject this hypothesis at the 5% level of significance?

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	. 00	01	02	03	04	05	. 06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 715	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

