
Math 224 Spring 2018
Homework 3 Drew Armstrong

1. Consider a coin with P (H) = p and P (T ) = q. Flip the coin until the first head shows
up and let X be the number of flips you made. The probability mass function and support of
this geometric random vabiable are given by

P (X = k) = qk−1p and SX = {1, 2, 3, . . .}.
(a) Use the geometric series 1 + q + q2 + · · · = (1− q)−1 to show that∑

k∈SX

P (X = k) = 1.

(b) Differentiate the geometric series to get 0 + 1 + 2q+ 3q2 + · · · = (1− q)−2 and use this
series to show that

E[X] =
∑
k∈SX

k · P (X = k) =
1

p
.

(c) Application: Start rolling a fair 6-sided die. On average, how long do you have to wait
until you see “1” for the first time?

Throughout I will assume that 0 < q = 1− p < 1. (The cases p ∈ {0, 1} are slightly different.)
For (a) we have ∑

k∈SX

P (X = k) =

∞∑
k=1

P (X = k)

=
∞∑
k=1

qk−1p

= p+ qp+ q2p+ q3p+ · · ·
= p(1 + q + q2 + q3 + · · · )
= p/(1− q)
= p/p

= 1.

In words: The total probability is 1. Then for (b) we have

E[X] =
∑
k∈SX

k · P (X = k) =

∞∑
k=1

k · P (X = k)

=
∞∑
k=1

kqk−1p

= p+ 2qp+ 3q2p+ 4q5p+ · · ·
= p(1 + 2q + 3q2 + 4q3 + · · · )
= p/(1− q)2

= p/p2

= 1/p.
1
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In words: We expect to see the first H on the (1/p)-th flip of the coin.
(c) Application: For example, we can think of a fair six-sided die as a strange coin where
H = {we get 1} and T = {we don’t get 1}, so that P (H) = p = 1/6. Let X be the number of
rolls until we see “1.” Then by part (b) we have

E[number of rolls until our first 1] = E[X] =
1

p
=

1

1/6
= 6.

That makes sense.

2. There are 2 red balls and 4 green balls in an urn. Suppose you grab 3 balls without
replacement and let X be the number of red balls you get.

(a) What is the support of this random variable?
(b) Draw a picture of the probability mass function fX(k) = P (X = k).
(c) Compute the expected value E[X]. Does the answer make sense?

(a) The support is SX = {0, 1, 2}.
(b) This X is a hypergeometric random variable with pmf given by the following table:

k 0 1 2

P (X = k)
(20)(

4
3)

(63)
= 4

20
(21)(

4
2)

(63)
= 12

20
(22)(

4
1)

(63)
= 4

20

Here is the line graph:

(c) We have

E[X] = 0 · P (X = 0) + 1 · P (X = 2) + 2 · P (X = 2) = 0 · 1

5
+ 1 · 3

5
+ 2 · 1

5
=

5

5
= 1.

This answer makes sense for two reasons:

• The line graph is symmetric about k = 1, so k = 1 is the center of mass.
• One third of the balls in the urn are red. If we grab three balls then we expect one

third of them (i.e., one ball) to be red.

3. Roll a pair of fair 6-sided dice and consider the following random variables:

X = the number that shows up on the first roll,

Y = the number that shows up on the second roll.
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(a) Write down all elements of the sample space S.
(b) Compute the probability mass function for the sum fX+Y (k) = P (X + Y = k) and

draw the probability histogram.
(c) Compute the expected value E[X + Y ] in two different ways.
(d) Compute the probability mass function for the difference fX−Y (k) = P (X − Y = k)

and draw the probability histogram.
(e) Compute the expected value E[X − Y ] in two different ways.
(f) Compute the probability mass function for the absolute value of the difference

f|X−Y |(k) = P (|X − Y | = k)

and draw the probability histogram.
(g) Compute the expected value E [|X − Y |]. This time there is only one way to do it.

(a) I will assume that the dice are ordered.1 Here is the sample space:

(b) To compute the probabilites P (X + Y = k) we circle the events {X + Y = k}:

1Unordered dice makes the problem much harder.
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And then we count them up:

k 2 3 4 5 6 7 8 9 10 11 12

P (X + Y = k) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Here is the probability histogram:

(c) We can compute the expected value directly from the formula:

E[X + Y ] =
12∑
k=2

k · P (X + Y = k)

= 2 · 1

36
+ 3 · 2

36
+ · · ·+ 11 · 2

36
+ 12 · 1

36
=

252

36
= 7.

Or we can use linearity. Recall from class that the average outcome in one roll of a fair die is
E[X] = E[Y ] = 3.5. Thus we have

E[X + Y ] = E[X] + E[Y ] = 3.5 + 3.5 = 7.

(d) To compute the probabilites P (X − Y = k) we circle the events {X − Y = k}:
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And then we count them up:

k −5 −4 −3 −2 −1 0 1 2 3 4 5

P (X − Y = k) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Here is the probability histogram:

Note that the histogram looks the same, just shifted 7 units to the left. That surprised me.

(e) We can compute the expected value directly from the formula:

E[X − Y ] =
5∑

k=−5
k · P (X − Y = k)

= −5 · 1

36
− 4 · 2

36
− · · ·+ 4 · 2

36
+ 5 · 1

36
=

0

36
= 0.

Or we can use linearity:

E[X − Y ] = E[X]− E[Y ] = 3.5− 3.5 = 0.
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(f) When we compute P (|X − Y | = k), some of the values from (d) turn positive:

Then we add them up:

k 0 1 2 3 4 5

P (X − Y = k) 6
36

10
36

8
36

6
36

4
36

2
36

And draw the histogram:

(g) We can compute the expected value directly from the formula:

E [|X − Y |] =
5∑

k=0

k · P (|X − Y | = k)

= 0 · 6

36
+ 1 · 10

36
+ · · ·+ 4 · 4

36
+ 5 · 2

36
=

70

36
= 1.94.

This time the linearity of expectation doesn’t help because the absolute value is not nice.
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4. Let X be a random variable satisfying

E[X + 1] = 3 and E[(X + 1)2] = 10.

Use this information to compute the following:

Var(X + 1), E[X], E[X2] and Var(X).

Solution: By definition we have

Var(X + 1) = E[(X + 1)2]− E[X + 1]2 = 10− 32 = 1.

Then using linearity of expectation gives

E[X + 1] = 3

E[X] + E[1] = 3

E[X] + 1 = 3

E[X] = 2

and

E[(X + 1)2] = 10

E[X2 + 2X + 1] = 10

E[X2] + 2E[X] + 1 = 10

E[X2] + 2(2) + 1 = 10

E[X2] = 5.

Finally, we have
Var(X) = E[X2]− E[X]2 = 5− 22 = 1.

Note that this agrees with the general fact Var(X + α) = Var(X) when α is constant.

5. Let X be a random variable with mean E[X] = µ and variance Var(X) = σ2 6= 0. Compute
the mean and variance of the random variable Y defined by

Y =
X − µ
σ

.

Solution: For the expected value we have

E[Y ] = E

[
X − µ
σ

]
=

1

σ
E[X − µ] =

1

σ
(E[X]− µ) =

1

σ
(µ− µ) = 0.

For the variance we have

E[Y ] = E[Y 2]−�
���

E[Y ]2

= E[Y 2]

= E

[
(X − µ)2

σ2

]
=

1

σ2
E[(X − µ)2]

=
1

σ2
Var(X) =

1

σ2
· σ2 = 1.

6. Let X be the number of strangers you must talk to until you find someone who shares your
birthday. (Assume that each day of the year is equally likely and ignore February 29.)
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(a) Find the probability mass function P (X = k).
(b) Find the expected value µ = E[X].
(c) Find the cumulative mass function P (X ≤ k). Hint: If X is a geometric random

variable with pmf P (X = k) = qk−1p, use the geometric series to show that

P (X ≤ k) = 1− P (X > k) = 1−
∞∑

i=k+1

qi−1p = 1− qk.

(d) Use part (c) to find the probability P (µ− 50 ≤ X ≤ µ+ 50) that X falls within ±50
of the expected value. Hint:

P (µ− 50 ≤ X ≤ µ+ 50) = P (X ≤ µ+ 50)− P (X ≤ µ− 50− 1).

(a) We can think of each stranger as a coin flip where “heads” means “they have the same
birthday as you.” Then X is a geometric random variable with P (H) = p = 1/365 and
P (T ) = q = 1− p = 364/365. From Problem 1 we know that

P (X) = qk−1p =

(
364

365

)k−1( 1

365

)
=

364k−1

365k
.

(b) From Problem 1 we also know that

E[X] =
1

p
=

1

1/365
= 365.

That is, on average you will need to speak to 365 strangers until you find someone who shares
your birthday. That makes sense.
(c) Note that P (X ≤ k) = 1− P (X > k) and

P (X > k) = P (X = k + 1) + P (X = k + 2) + P (X = k + 3) + · · ·

= qkp+ qk+1p+ qk+3p+ · · ·

= qkp(1 + q + q2 + · · · )

= qkp · 1

1− q
= qkp · 1

p
= qk.

So we conclude that P (X ≤ k) = 1− qk.
(d) Continuing from part (c), we have for any whole numbers k and ` that

P (k ≤ X ≤ `) = P (X ≤ `)− P (X ≤ k − 1) = (1− q`)− (1− qk−1) = qk−1 − q`.

In particular, we see that

P (315 ≤ X ≤ 415) = q314 − q415 =

(
364

365

)314

−
(

364

365

)415

= 10.22%.

In other words, there is a 10.22% chance that you will need to ask between 315 and 415 people
until you find someone who shares your birthday. Here is a picture of the pmf (not to scale,
obviously):
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7. I am running a lottery. I will sell 10 tickets, each for a price of $1. The person who buys
the winning ticket will receive a cash prize of $5.

(a) If you buy one ticket, what is the expected value of your profit?
(b) If you buy two tickets, what is the expected value of your profit?
(c) If you buy n tickets (0 ≤ n ≤ 10), what is the expected value of your profit? Which

value of n maximizes your expected profit?

[Remark: Profit equals prize money minus cost of the tickets.]

(a) Suppose you buy one ticket and let X be your profit. If you buy a losing ticket then your
profit is X = −1 dollar and if you buy the winning ticket then your profit is X = −1 + 5 = 4
dollars. The probability of getting the winning ticket is 1/10, so here is the pmf of X:

k −1 +4

P (X = k) 9
10

1
10

Your expected profit is E[X] = (−1)(9/10) + 4(1/10) = −5/10 = −0.5 dollars.

(b) Let X be your profit from the purchase of two tickets. If both tickets are losers then
X = −2 and if one ticket is a winner then X = −2 + 5 = 3. The number of ways to choose
2 out of 10 tickets is

(
10
2

)
= 45 and the number of way to choose 2 losing tickets out of 9 is(

9
2

)
= 36. The number of ways to choose 1 winning ticket and 1 losing ticket is

(
1
1

)(
9
1

)
= 9. So

here is the pmf of X:

k −2 +3

P (X = k)
(10)(

9
2)

(102 )
= 36

45 = 8
10

(11)(
9
1)

(102 )
= 9

45 = 2
10 .

Your expected profit is E[X] = (−2)(8/10) + 3(2/10) = −10− /10 = −1 dollar.
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(c) Let X be your profit from the purchase of n tickets (where 0 ≤ n ≤ 10). Using a similar
argument (and some algebraic manipulation) gives the pmf:

k −n 5− n

P (X = k)
(10)(

9
n)

(10n )
= 10−n

10
(11)(

9
1)

(102 )
= n

10 .

Your expected profit is E[X] = (−n)(10 − n)/10 + (5 − n)(n/10) = −n/2 dollars. You will
maximize your profit by purchasing n = 0 lottery tickets. But there is an easier way.

Easier Solution: Suppose you purchase n tickets and let Xi be your profit from the ith ticket.
From part (a) we know that E[Xi] = −0.5. Now let X = X1 + X2 + · · · + Xn be your total
profit. Using linearity of expectation gives

X = X1 +X2 + · · ·+Xn

E[X] = E[X1 +X2 + · · ·+Xn]

E[X] = E[X1] + E[X2] + · · ·+ E[Xn]

= −0.5− 0.5− · · · − 0.5 = n(−0.5) = −n/2.

Note that linearity of expectation holds even though the random variables Xi are not inde-
pendent of each other. That’s pretty useful.

8. Consider a coin with P (H) = p and P (T ) = q. Flip the coin n times and let X be the
number of heads you get. In this problem you will give a bad proof that E[X] = np.

(a) Use the formula
(
n
k

)
= n!

k!(n−k)! to show that k
(
n
k

)
= n

(
n−1
k−1
)
.

(b) Complete the following computation:

E[X] =
n∑

k=0

k · P (X = k)

=
n∑

k=1

k · P (X = k)

=
n∑

k=1

k

(
n

k

)
pkqn−k

=
n∑

k=1

k

(
n

k

)
pkqn−k

=
n∑

k=1

n

(
n− 1

k − 1

)
pkqn−k

= · · ·

(a) Note that

n

(
n− 1

k − 1

)
= n · (n− 1)!

(k − 1)! [(n− �1)− (k − �1)]!
=

n(n− 1)!

(k − 1)(n− k)!
=

n!

(k − 1)!(n− k)!

and

k

(
n

k

)
= k · n!

k!(n− k)!
= �k ·

n!

�k(k − 1)!(n− k)!
=

n!

(k − 1)!(n− k)!
.
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Alternate Proof: Suppose you want to choose a k-member club from a classroom of n students,
where one member of the club will serve as president. On the one hand, you can choose the
club members in

(
n
k

)
ways. Then there are k ways to choose the president. On the other hand,

you can first choose a student to serve as club president. There are n ways to do this. Then
there are

(
n−1
k−1
)

ways to choose the remaining k − 1 club members from the remaining n − 1
students.

(b) Since p+ q = 1, let me first note that

1 = 1n−1 = (p+ q)n−1 =
n−1∑
`=0

(
n− 1

`

)
p`q(n−1)−`.

Then making the substitution k = `+ 1 gives

E[X] = · · ·

=
n∑

k=1

n

(
n− 1

k − 1

)
pkqn−k

= n
n∑

k=1

(
n− 1

k − 1

)
pkqn−k

= np

(
n∑

k=1

(
n− 1

k − 1

)
pk−1qn−k

)

= np

(
n−1∑
`=0

(
n− 1

(`+ 1)− 1

)
p(`+1)−1qn−(`+1)

)

= np

(
n−1∑
`=0

(
n− 1

`

)
p`q(n−1)−`

)
= np(1)

= np,

as desired.

Remark: That was certainly a bad way to solve the problem.


