
Math 224 Spring 2018
Homework 1 Drew Armstrong

1. Suppose that a fair coin is flipped 6 times in sequence and let X be the number of “heads”
that show up. Draw Pascal’s triangle down to the sixth row (recall that the zeroth row consists
of a single 1) and use your table to compute the probabilities P (X = k) for k = 0, 1, 2, 3, 4, 5, 6.

Here is Pascal’s Triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Then since 26 = 64 we have the following table of probabilities:

k 0 1 2 3 4 5 6

P (X = k) 1
64

6
64

15
64

20
64

15
64

6
64

1
64

2. Suppose that a fair coin is flipped 4 times in sequence.

(a) List all 16 outcomes in the sample space S.
(b) List the outcomes in each of the following events:

A = {at least 3 heads},
B = {at most 2 heads},
C = {heads on the 2nd flip},
D = {exactly 2 tails}.

(c) Assuming that all outcomes are equally likely, use the formula P (E) = #E/#S to
compute the following probabilities:

P (A ∪B), P (A ∩B), P (C), P (D), P (C ∩D).

(a) The sample space is

S ={HHHH,

HHHT,HHTH,HTHH,THHH,

HHTT,HTHT,HTTH, THHT, THTH, TTHH,

HTTT, THTT, TTHT, TTTH,

TTTT}
1



2

(b) The events are

A ={HHHH,

HHHT,HHTH,HTHH,THHH},
B ={HHTT,HTHT,HTTH, THHT, THTH, TTHH,

HTTT, THTT, TTHT, TTTH,

TTTT},
C ={HHHH,

HHHT,HHTH, THHH,

HHTT, THHT, THTH,

THTT},
D ={HHTT,HTHT,HTTH, THHT, THTH, TTHH}.

(c) Observe that A ∪B = S and A ∩B = ∅, so that

P (A ∪B) = P (S) = 1 and P (A ∩B) = P (∅) = 0.

Observe that #C = 8 and #D = 6, so that

P (C) =
#C

#S
=

8

16
and P (D) =

#D

#S
=

6

16
.

Finally, observe that C ∩D = {HHTT, THHT, THTH} so that

P (C ∩D) =
#(C ∩D)

#S
=

3

16
.

3. Draw Venn diagrams to verify de Morgan’s laws: For all events E,F ⊆ S we have

(a) (E ∪ F )′ = E′ ∩ F ′,
(b) (E ∩ F )′ = E′ ∪ F ′.

The proof follows from the following diagrams:
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4. Suppose that a fair coin is flipped until heads appears. The sample space is

S = {H,TH, TTH, TTTH, TTTTH, . . .}.
However these outcomes are not equally likely.

(a) Let Ek be the event {first H occurs on the kth flip}. Explain why P (Ek) = 1/2k.
[Hint: The outcomes of the coin flips are independent.]

(b) Use the “geometric series” to verify that the sum of all the probabilities equals 1:

∞∑
k=1

P (Ek) = 1.

(a) There is exactly one outcome in this event:

Ek = {TTT · · ·T︸ ︷︷ ︸
k − 1 times

H}.

Since the coin flips are fair and independent we have

P (Ek) = P (TTT · · ·T︸ ︷︷ ︸
k − 1 times

H)

= P (T )P (T )P (T ) · · ·P (T )︸ ︷︷ ︸
k − 1 times

P (H)

=

(
1

2

)(
1

2

)(
1

2

)
· · ·
(

1

2

)
︸ ︷︷ ︸

k − 1 times

(
1

2

)
=

(
1

2

)k

=
1

2k
.

(b) Recall the “geometric series” from calculus: If q is any number satisfying −1 < q < 1 then
we have

1 + q + q2 + q3 + · · · = 1

1− q
.
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By substituting q = 1/2 we obtain

1 +
1

2
+

1

4
+

1

8
+ · · · = 1

1− 1/2

1 +
1

2
+

1

4
+

1

8
+ · · · = 2

1

2
+

1

4
+

1

8
+ · · · = 2− 1

1

2
+

1

4
+

1

8
+ · · · = 1

and hence
∞∑
k=0

P (Ek) =

∞∑
k=0

1

2k
=

1

2
+

1

4
+

1

8
+ · · · = 1.

5. Suppose that P (A) = 0.5, P (B) = 0.6 and P (A ∩ B) = 0.3. Use this information to
compute the following probabilities. A Venn diagram may be helpful.

(a) P (A ∪B),
(b) P (A ∩B′),
(c) P (A′ ∪B′).

(a) Using Inclusion-Exclusion for two events gives

P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.5 + 0.6− 0.3 = 0.8.

(b) Using the Law of Total Probability gives

P (A) = P (A ∩B) + P (A ∩B′)

0.5 = 0.3 + P (A ∩B′)

0.2 = P (A ∩B′).

(c) Using de Morgan’s Law and Complementary Events gives

P (A′ ∪B′) = P ((A ∩B)′) = 1− P (A ∩B) = 1− 0.3 = 0.7.

6. Let X be a real number that is selected randomly from [0, 1], i.e., the closed interval from
zero to one. Use your intuition to assign values to the following probabilities:

(a) P (X = 1/2),
(b) P (0 ≤ X ≤ 1/2),
(c) P (0 < X < 1/2),
(d) P (1/3 < X ≤ 3/4),
(e) P (−1 < X < 3/4).

(a) If all of the points in [0, 1] are “equally likely,” then since there are infinitely many points
we must have

P (X = 1/2) =
1

∞
= 0.

Maybe you’re uncomfortable with this, but it’s the least wrong answer we can come up with.
(c) By symmetry, there must be a 50% of landing in the left half of the interval:

P (0 < X < 1/2) = 1/2.
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(b) If you agreed in part (a) that P (X = 1/2) = P (X = 0) = 0 then we must have

P (0 ≤ X ≤ 1/2) =���
��P (X = 0) + P (0 < X < 1/2) +((((

(((P (X = 1/2)

= 0 + P (0 < X < 1/2) + 0

= P (0 < X < 1/2) = 1/2.

(c) In general, the probability of landing in an interval must be the length of the interval.
And we can just ignore the endpoints.

P (1/3 < X ≤ 3/4) =
3

4
− 1

3
=

5

12
.

(d) It is impossible to get −1 < X < 0, so we must have

P (−1 < X < 3/4) =((((
((((P (−1 < X < 0) + P (0 < X < 3/4)

= 0 + P (0 < X < 3/4)

= P (0 < X < 3/4) = 3/4.

7. Consider a strange coin with P (H) = p and P (T ) = q = 1 − p. Suppose that you flip
the coin n times and let X be the number of heads that you get. Find a formula for the
probability P (X ≥ 1). [Hint: Observe that P (X ≥ 1) + P (X = 0) = 1. Maybe it’s easier to
find a formula for P (X = 0).]

There is only one way to get X = 0:

“X = 0” = {TTT · · ·T︸ ︷︷ ︸
n times

}.

Then by independence we must have

P (X = 0) = P (TTT · · ·T︸ ︷︷ ︸
n times

)

= P (T )P (T )P (T ) · · ·P (T )︸ ︷︷ ︸
n times

= qqq · · · q︸ ︷︷ ︸
n times

= qn

and hence P (X ≥ 1) = 1− P (X = 0) = 1− qn.

8. Suppose that you roll a pair of fair six-sided dice.

(a) Write down all elements of the sample space S. What is #S? Are the outcomes
equally likely? [Hopefully, yes.]

(b) Compute the probability of getting a “double six.” [Hint: Let E ⊆ S be the subset of
outcomes that correspond to getting a “double six.” Assuming that the outcomes of
your sample space are equally likely, you can use the formula P (E) = #E/#S.]

(a) Let’s suppose that one die is “blue” and the other is “red,” so we can tell them apart. In
other words, the outcome “12”=“the blue die shows 1 and the red die shows 2” will differ from



6

the outcome “21”=“the blue die shows 2 and the red die shows 1.” The the sample space is:

S ={11, 12, 13, 14, 15, 16

21, 22, 23, 24, 25, 26

31, 32, 33, 34, 35, 36

41, 42, 43, 44, 45, 46

61, 62, 63, 64, 65, 66}.

Independence and fairness suggest that for any outcome ij ∈ S we must have P (ij) =
P (i)P (j) = (1/6)(1/6) = 1/36. In other words, the 36 outcomes are equally likely.1

(b) Let E =“double six,” so that E = {66}. Then we have

P (E) =
#E

#S
=

1

36
.

9. Analyze the Chevalier de Méré’s two experiments:

(a) Roll a fair six-sided die 4 times and let X be the number of “sixes” that you get.
Compute P (X ≥ 1). [Hint: You can think of a die roll as a “strange coin flip,” where
H =“six” and T =“not six.” Use Problem 7.]

(b) Roll a pair of fair six-sided dice 24 times and let Y be the number of “double sixes”
that you get. Compute P (Y ≥ 1). [Hint: You can think of rolling two dice as a “very
strange coin flip,” where H =“double six” and T =“not double six.” Use Problems 7
and 8.]

(a) Roll a fair six-sided die and let H =“we get six,” so that P (H) = p = 1/6 and P (T ) =
q = 5/6. Then according to Problem 7 we have

P (X ≥ 1) = 1− q4 = 1−
(

5

6

)4

= 51.77%.

(b) Roll a pair of fair six-sided dice and let H =“we get double six.” Then from Problem 8
we know that P (H) = p = 1/36 and P (T ) = q = 35/36 and from Problem 7 we find

P (Y ≥ 1) = 1− q24 = 1−
(

35

36

)24

= 49.14%.

10. Roll a fair six-sided die three times in sequence, and consider the events

E1 = {you get 1 or 2 or 3 on the first roll},
E2 = {you get 1 or 3 or 5 on the second roll},
E3 = {you get 2 or 4 or 6 on the third roll}.

You can assume that P (E1) = P (E2) = P (E3) = 1/2.

(a) Explain why P (E1∩E2) = P (E1∩E3) = P (E2∩E3) = 1/4 and P (E1∩E2∩E3) = 1/8.
(b) Use this information to compute P (E1 ∪ E2 ∪ E3).

1It’s perfectly okay to consider the two dice as “unordered” or “uncolored.” Then we will have #S = 21.
However, in this case the outcomes will not be equally likely, which makes the analysis much harder.
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(a) Since the event Ei only cares about what happens on the ith roll, we will assume that
these events are independent. Then for all i < j we have

P (Ei ∩ Ej) = P (Ei)P (Ej) =
1

2
· 1

2
=

1

4
and for all i < j < k we have

P (Ei ∩ Ej ∩ Ek) = P (Ei)P (Ej)P (Ek) =
1

2
· 1

2
· 1

2
=

1

8
.

(b) Now we can use the Principle of Inclusion-Exclusion:

P (E1 ∪ E2 ∪ E3) = P (E1) + P (E2) + P (E3)

− P (E1 ∩ E2)− P (E1 ∩ E3)− P (E2 ∩ E3)

+ P (E1 ∩ E2 ∩ E3)

= 1/2 + 1/2 + 1/2

− 1/4− 1/4− 1/4

+ 1/8

= 3/2− 3/4 + 1/8 = 7/8.

Alternate Solution. We can think of this experiment as a “very strange coin flip,” in which
the definition of “heads” changes from flip to flip:

E1 = {you get heads on the first flip},
E2 = {you get heads on the second flip},
E3 = {you get heads on the third flip}.

Since the probability of “heads” is always 1/2 and since the events are independent, we can
treat this just like three flips of a fair coin. Then using Problem 7 gives

P (E1 ∪ E2 ∪ E3) = P (you get heads at least once)

= 1− P (tails)3

= 1− (1/2)2 = 7/8.

This simplification seems a bit dubious but it must be okay because we got the correct answer.


