1. Suppose that a fair coin is flipped 6 times in sequence and let X be the number of "heads" that show up. Draw Pascal's triangle down to the sixth row (recall that the zeroth row consists of a single 1) and use your table to compute the probabilities $P(X=k)$ for $k=0,1,2,3,4,5,6$.

Here is Pascal's Triangle:

						1						
				1		1						
				1		2		1				
		1	1		3		3		1			
	1		5	4		6		4		1		
1		6		15			20		15		6	
1												

Then since $2^{6}=64$ we have the following table of probabilities:

k	0	1	2	3	4	5	6
$P(X=k)$	$\frac{1}{64}$	$\frac{6}{64}$	$\frac{15}{64}$	$\frac{20}{64}$	$\frac{15}{64}$	$\frac{6}{64}$	$\frac{1}{64}$

2. Suppose that a fair coin is flipped 4 times in sequence.
(a) List all 16 outcomes in the sample space S.
(b) List the outcomes in each of the following events:
$A=\{$ at least 3 heads $\}$,
$B=\{$ at most 2 heads $\}$,
$C=\{$ heads on the 2nd flip $\}$,
$D=\{$ exactly 2 tails $\}$.
(c) Assuming that all outcomes are equally likely, use the formula $P(E)=\# E / \# S$ to compute the following probabilities:

$$
P(A \cup B), \quad P(A \cap B), \quad P(C), \quad P(D), \quad P(C \cap D) .
$$

(a) The sample space is

$$
\begin{aligned}
S= & \{H H H H, \\
& H H H T, \text { HHTH, } \mathrm{H} T H H, T H H H, \\
& H H T T, H T H T, H T T H, T H H T, T H T H, T T H H, \\
& H T T T, T H T T, T T H T, T T T H, \\
& T T T T\}
\end{aligned}
$$

(b) The events are

$$
\begin{aligned}
A= & \{H H H H, \\
& H H H T, \text { HHTH, HTHH,THHH\},} \\
B= & \{H H T T, H T H T, H T T H, T H H T, T H T H, T T H H, \\
& H T T T, T H T T, T T H T, T T T H, \\
& T T T T\}, \\
C= & \{H H H H, \\
& H H H T, H H T H, T H H H, \\
& H H T T, T H H T, T H T H, \\
& T H T T\}, \\
D= & \{H H T T, H T H T, H T T H, T H H T, T H T H, T T H H\} .
\end{aligned}
$$

(c) Observe that $A \cup B=S$ and $A \cap B=\emptyset$, so that

$$
P(A \cup B)=P(S)=1 \quad \text { and } \quad P(A \cap B)=P(\emptyset)=0
$$

Observe that $\# C=8$ and $\# D=6$, so that

$$
P(C)=\frac{\# C}{\# S}=\frac{8}{16} \quad \text { and } \quad P(D)=\frac{\# D}{\# S}=\frac{6}{16} .
$$

Finally, observe that $C \cap D=\{H H T T, T H H T, T H T H\}$ so that

$$
P(C \cap D)=\frac{\#(C \cap D)}{\# S}=\frac{3}{16} .
$$

3. Draw Venn diagrams to verify de Morgan's laws: For all events $E, F \subseteq S$ we have
(a) $(E \cup F)^{\prime}=E^{\prime} \cap F^{\prime}$,
(b) $(E \cap F)^{\prime}=E^{\prime} \cup F^{\prime}$.

The proof follows from the following diagrams:

4. Suppose that a fair coin is flipped until heads appears. The sample space is

$$
S=\{H, T H, T T H, T T T H, T T T T H, \ldots\} .
$$

However these outcomes are not equally likely.
(a) Let E_{k} be the event \{first H occurs on the k th flip\}. Explain why $P\left(E_{k}\right)=1 / 2^{k}$. [Hint: The outcomes of the coin flips are independent.]
(b) Use the "geometric series" to verify that the sum of all the probabilities equals 1:

$$
\sum_{k=1}^{\infty} P\left(E_{k}\right)=1
$$

(a) There is exactly one outcome in this event:

$$
E_{k}=\{\underbrace{T T T \cdots T}_{k-1 \text { times }} H\} .
$$

Since the coin flips are fair and independent we have

$$
\begin{aligned}
P\left(E_{k}\right) & =P(\underbrace{T T T \cdots T}_{k-1 \text { times }} H) \\
& =\underbrace{P(T) P(T) P(T) \cdots P(T)}_{k-1 \text { times }} P(H) \\
& =\underbrace{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) \cdots\left(\frac{1}{2}\right)}_{k-1 \text { times }}\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{k}=\frac{1}{2^{k}} .
\end{aligned}
$$

(b) Recall the "geometric series" from calculus: If q is any number satisfying $-1<q<1$ then we have

$$
1+q+q^{2}+q^{3}+\cdots=\frac{1}{1-q} .
$$

By substituting $q=1 / 2$ we obtain

$$
\begin{aligned}
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots & =\frac{1}{1-1 / 2} \\
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots & =2 \\
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots & =2-1 \\
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots & =1
\end{aligned}
$$

and hence

$$
\sum_{k=0}^{\infty} P\left(E_{k}\right)=\sum_{k=0}^{\infty} \frac{1}{2^{k}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=1 .
$$

5. Suppose that $P(A)=0.5, P(B)=0.6$ and $P(A \cap B)=0.3$. Use this information to compute the following probabilities. A Venn diagram may be helpful.
(a) $P(A \cup B)$,
(b) $P\left(A \cap B^{\prime}\right)$,
(c) $P\left(A^{\prime} \cup B^{\prime}\right)$.
(a) Using Inclusion-Exclusion for two events gives

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.5+0.6-0.3=0.8 \text {. }
$$

(b) Using the Law of Total Probability gives

$$
\begin{aligned}
P(A) & =P(A \cap B)+P\left(A \cap B^{\prime}\right) \\
0.5 & =0.3+P\left(A \cap B^{\prime}\right) \\
0.2 & =P\left(A \cap B^{\prime}\right) .
\end{aligned}
$$

(c) Using de Morgan's Law and Complementary Events gives

$$
P\left(A^{\prime} \cup B^{\prime}\right)=P\left((A \cap B)^{\prime}\right)=1-P(A \cap B)=1-0.3=0.7 .
$$

6. Let X be a real number that is selected randomly from [0, 1], i.e., the closed interval from zero to one. Use your intuition to assign values to the following probabilities:
(a) $P(X=1 / 2)$,
(b) $P(0 \leq X \leq 1 / 2)$,
(c) $P(0<X<1 / 2)$,
(d) $P(1 / 3<X \leq 3 / 4)$,
(e) $P(-1<X<3 / 4)$.
(a) If all of the points in $[0,1]$ are "equally likely," then since there are infinitely many points we must have

$$
P(X=1 / 2)=\frac{1}{\infty}=0
$$

Maybe you're uncomfortable with this, but it's the least wrong answer we can come up with. (c) By symmetry, there must be a 50% of landing in the left half of the interval:

$$
P(0<X<1 / 2)=1 / 2 .
$$

(b) If you agreed in part (a) that $P(X=1 / 2)=P(X=0)=0$ then we must have

$$
\begin{aligned}
P(0 \leq X \leq 1 / 2) & =P(X=0)+P(0<X<1 / 2)+P(X=1 / 2) \\
& =0+P(0<X<1 / 2)+0 \\
& =P(0<X<1 / 2)=1 / 2 .
\end{aligned}
$$

(c) In general, the probability of landing in an interval must be the length of the interval. And we can just ignore the endpoints.

$$
P(1 / 3<X \leq 3 / 4)=\frac{3}{4}-\frac{1}{3}=\frac{5}{12} .
$$

(d) It is impossible to get $-1<X<0$, so we must have

$$
\begin{aligned}
P(-1<X<3 / 4) & =P(-1<X<0)+P(0<X<3 / 4) \\
& =0+P(0<X<3 / 4) \\
& =P(0<X<3 / 4)=3 / 4 .
\end{aligned}
$$

7. Consider a strange coin with $P(H)=p$ and $P(T)=q=1-p$. Suppose that you flip the coin n times and let X be the number of heads that you get. Find a formula for the probability $P(X \geq 1)$. [Hint: Observe that $P(X \geq 1)+P(X=0)=1$. Maybe it's easier to find a formula for $P(X=0)$.]

There is only one way to get $X=0$:

$$
" X=0 "=\{\underbrace{T T T \cdots T}_{n \text { times }}\} \text {. }
$$

Then by independence we must have

$$
\begin{aligned}
P(X=0) & =P(\underbrace{T T T \cdots T}_{n \text { times }}) \\
& =\underbrace{P(T) P(T) P(T) \cdots P(T)}_{n \text { times }} \\
& =\underbrace{q q q \cdots q}_{n \text { times }}=q^{n}
\end{aligned}
$$

and hence $P(X \geq 1)=1-P(X=0)=1-q^{n}$.
8. Suppose that you roll a pair of fair six-sided dice.
(a) Write down all elements of the sample space S. What is $\# S$? Are the outcomes equally likely? [Hopefully, yes.]
(b) Compute the probability of getting a "double six." [Hint: Let $E \subseteq S$ be the subset of outcomes that correspond to getting a "double six." Assuming that the outcomes of your sample space are equally likely, you can use the formula $P(E)=\# E / \# S$.]
(a) Let's suppose that one die is "blue" and the other is "red," so we can tell them apart. In other words, the outcome " 12 " = "the blue die shows 1 and the red die shows 2 " will differ from
the outcome " 21 " = "the blue die shows 2 and the red die shows $1 . "$ The the sample space is:

$$
\begin{aligned}
S= & \{11,12,13,14,15,16 \\
& 21,22,23,24,25,26 \\
& 31,32,33,34,35,36 \\
& 41,42,43,44,45,46 \\
& 61,62,63,64,65,66\} .
\end{aligned}
$$

Independence and fairness suggest that for any outcome $i j \in S$ we must have $P(i j)=$ $P(i) P(j)=(1 / 6)(1 / 6)=1 / 36$. In other words, the 36 outcomes are equally likely ${ }^{1}$
(b) Let $E=$ "double six," so that $E=\{66\}$. Then we have

$$
P(E)=\frac{\# E}{\# S}=\frac{1}{36} .
$$

9. Analyze the Chevalier de Méré's two experiments:
(a) Roll a fair six-sided die 4 times and let X be the number of "sixes" that you get. Compute $P(X \geq 1)$. [Hint: You can think of a die roll as a "strange coin flip," where $H=$ "six" and $T=$ "not six." Use Problem 7.]
(b) Roll a pair of fair six-sided dice 24 times and let Y be the number of "double sixes" that you get. Compute $P(Y \geq 1)$. [Hint: You can think of rolling two dice as a "very strange coin flip," where $H=$ "double six" and $T=$ "not double six." Use Problems 7 and 8.]
(a) Roll a fair six-sided die and let $H=$ "we get six," so that $P(H)=p=1 / 6$ and $P(T)=$ $q=5 / 6$. Then according to Problem 7 we have

$$
P(X \geq 1)=1-q^{4}=1-\left(\frac{5}{6}\right)^{4}=51.77 \% .
$$

(b) Roll a pair of fair six-sided dice and let $H=$ "we get double six." Then from Problem 8 we know that $P(H)=p=1 / 36$ and $P(T)=q=35 / 36$ and from Problem 7 we find

$$
P(Y \geq 1)=1-q^{24}=1-\left(\frac{35}{36}\right)^{24}=49.14 \% .
$$

10. Roll a fair six-sided die three times in sequence, and consider the events

$$
\begin{aligned}
& E_{1}=\{\text { you get } 1 \text { or } 2 \text { or } 3 \text { on the first roll }\}, \\
& E_{2}=\{\text { you get } 1 \text { or } 3 \text { or } 5 \text { on the second roll }\}, \\
& E_{3}=\{\text { you get } 2 \text { or } 4 \text { or } 6 \text { on the third roll }\}
\end{aligned}
$$

You can assume that $P\left(E_{1}\right)=P\left(E_{2}\right)=P\left(E_{3}\right)=1 / 2$.
(a) Explain why $P\left(E_{1} \cap E_{2}\right)=P\left(E_{1} \cap E_{3}\right)=P\left(E_{2} \cap E_{3}\right)=1 / 4$ and $P\left(E_{1} \cap E_{2} \cap E_{3}\right)=1 / 8$.
(b) Use this information to compute $P\left(E_{1} \cup E_{2} \cup E_{3}\right)$.

[^0](a) Since the event E_{i} only cares about what happens on the i th roll, we will assume that these events are independent. Then for all $i<j$ we have
$$
P\left(E_{i} \cap E_{j}\right)=P\left(E_{i}\right) P\left(E_{j}\right)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}
$$
and for all $i<j<k$ we have
$$
P\left(E_{i} \cap E_{j} \cap E_{k}\right)=P\left(E_{i}\right) P\left(E_{j}\right) P\left(E_{k}\right)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} .
$$
(b) Now we can use the Principle of Inclusion-Exclusion:
\[

$$
\begin{aligned}
P\left(E_{1} \cup E_{2} \cup E_{3}\right)= & P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right) \\
& -P\left(E_{1} \cap E_{2}\right)-P\left(E_{1} \cap E_{3}\right)-P\left(E_{2} \cap E_{3}\right) \\
& +P\left(E_{1} \cap E_{2} \cap E_{3}\right) \\
= & 1 / 2+1 / 2+1 / 2 \\
& -1 / 4-1 / 4-1 / 4 \\
& +1 / 8 \\
= & 3 / 2-3 / 4+1 / 8=7 / 8 .
\end{aligned}
$$
\]

Alternate Solution. We can think of this experiment as a "very strange coin flip," in which the definition of "heads" changes from flip to flip:

$$
\begin{aligned}
& E_{1}=\{\text { you get heads on the first flip }\} \\
& E_{2}=\{\text { you get heads on the second flip }\} \\
& E_{3}=\{\text { you get heads on the third flip }\}
\end{aligned}
$$

Since the probability of "heads" is always $1 / 2$ and since the events are independent, we can treat this just like three flips of a fair coin. Then using Problem 7 gives

$$
\begin{aligned}
P\left(E_{1} \cup E_{2} \cup E_{3}\right) & =P(\text { you get heads at least once }) \\
& =1-P(\text { tails })^{3} \\
& =1-(1 / 2)^{2}=7 / 8 .
\end{aligned}
$$

This simplification seems a bit dubious but it must be okay because we got the correct answer.

[^0]: ${ }^{1}$ It's perfectly okay to consider the two dice as "unordered" or "uncolored." Then we will have $\# S=21$. However, in this case the outcomes will not be equally likely, which makes the analysis much harder.

