Version A

Problem 1. Let X be a normal random variable with mean μ and variance σ^{2}.
(a) Tell me the probability density function f_{X}.

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

(b) Sketch the graph of f_{X}, showing the maximum and the points of inflection.

(c) Compute the probability $P(\mu+\sigma<X<\mu+2 \sigma)$.

Since $(X-\mu) / \sigma$ is standard normal, we have

$$
\begin{aligned}
P(\mu+\sigma<X<\mu+2 \sigma) & =P(\sigma<X-\mu<2 \sigma) \\
& =P\left(1<\frac{X-\mu}{\sigma}<2\right) \\
& =\Phi(2)-\Phi(1) \\
& =0.9772-0.8413=13.59 \% .
\end{aligned}
$$

Problem 2. Let X be a continuous random variable with the following pdf:

$$
f_{X}(x)= \begin{cases}\frac{3}{4}\left(1-x^{2}\right) & -1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute $\mu=E[X]$ and $\sigma^{2}=\operatorname{Var}(X)$.

We have

$$
\mu=E[X]=\int_{-1}^{1} x \cdot \frac{3}{4}\left(1-x^{2}\right) d x=\left.\frac{3}{4}\left(\frac{x^{2}}{2}-\frac{x^{4}}{4}\right)\right|_{-1} ^{1}=0
$$

and

$$
E\left[X^{2}\right]=\int_{-1}^{1} x^{2} \cdot \frac{3}{4}\left(1-x^{2}\right) d x=\left.\frac{3}{4}\left(\frac{x^{3}}{3}-\frac{x^{5}}{5}\right)\right|_{-1} ^{1}=\frac{1}{5},
$$

hence $\sigma^{2}=\operatorname{Var}(X)=E\left[X^{2}\right]-\mu^{2}=1 / 5$.
(b) Compute the probability $P(\mu-\sigma<X<\mu+\sigma)$.

Since $\mu=0$ and $\sigma=\sqrt{1 / 5}=0.447$ we have

$$
\begin{aligned}
P(\mu-\sigma<X<\mu+\sigma) & =P(-0.447<X<0.447) \\
& =\int_{-0.447}^{0.447} \frac{3}{4}\left(1-x^{2}\right) d x \\
& =\left.\frac{3}{4}\left(x-\frac{x^{3}}{3}\right)\right|_{-0.447} ^{0.447}=62.6 \% .
\end{aligned}
$$

(c) Draw the graph of f_{X}, showing the region whose area you computed in part (b).

Problem 3. Let $Z \sim N(0,1)$ be a standard normal random variable.
(a) Find α such that $P(Z>0.72)=\alpha$ and draw a picture to illustrate your answer.

The area of the shaded region is $\alpha=1-\Phi(0.72)=1-0.7642=0.2358$:

(b) Find c such that $P(|Z|>c)=0.75$ and draw a picture to illustrate your answer.

We have $c=0.32$. The area of the shaded region is 0.75 :

(c) Find d such that $P(Z>d)=0.25$ and draw a picture to illustrate your answer.

We have $d=0.675$. The area of the shaded region is 0.25 :

Problem 4. Let $X_{1}, X_{2}, \ldots, X_{20}$ be an iid sequence of random variables with

$$
\mu=E\left[X_{i}\right]=6 \quad \text { and } \quad \sigma^{2}=\operatorname{Var}\left(X_{i}\right)=4 .
$$

Consider the sum X and the average \bar{X} of these random variables:

$$
X=X_{1}+X_{2}+\cdots+X_{20} \quad \text { and } \quad \bar{X}=\frac{1}{20} \cdot X
$$

(a) Compute the numbers $E[X], \operatorname{Var}(X), E[\bar{X}]$ and $\operatorname{Var}(\bar{X})$.

$$
\begin{aligned}
E[X] & =20 \cdot \mu=120, \\
\operatorname{Var}(X) & =20 \cdot \sigma^{2}=80, \\
E[\bar{X}] & =\mu=6, \\
\operatorname{Var}(\bar{X}) & =\sigma^{2} / 20=4 / 20=1 / 5 .
\end{aligned}
$$

(b) Use the Central Limit Theorem to estimate the probability $P(X<110)$.

We assume that $(X-120) / \sqrt{80}$ is approximately standard normal, so that

$$
\begin{aligned}
P(X<110) & =P(X-120<-10) \\
& =P\left(\frac{X-120}{\sqrt{80}}<-1.12\right) \\
& \approx \Phi(-1.12)=1-\Phi(1.12)=1-0.8686=13.14 \% .
\end{aligned}
$$

(c) Use the Central Limit Theorem to estimate the probability $P(\bar{X}>5.5)$.

We assume that $(\bar{X}-6) / \sqrt{1 / 5}$ is approximately standard normal, so that

$$
\begin{aligned}
P(\bar{X}>5.5) & =P(\bar{X}-6>-0.5) \\
& =P\left(\frac{\bar{X}-6}{\sqrt{1 / 5}}>-1.12\right) \\
& \approx 1-\Phi(-1.12)=\Phi(1.12)=0.8686=86.86 \% .
\end{aligned}
$$

Problem 5. Suppose that a coin with $P(H)=p=1 / 3$ is flipped $n=6$ times. Let X be the number of heads that show up.
(a) Compute the exact value of $P(3 \leq X \leq 4)$.

$$
\begin{aligned}
P(3 \leq X \leq 4) & =P(X=3)+P(X=4) \\
& =\binom{6}{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{3}+\binom{6}{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{2}=30.18 \% .
\end{aligned}
$$

(b) Compute an approximate value for $P(3 \leq X \leq 4)$ by integrating under a normal curve. Don't forget to use a continuity correction.

Let $X^{\prime} \sim N(n p, n p q)=N(2,4 / 3)$. Assuming that $X \approx X^{\prime}$ gives

$$
\begin{aligned}
P(3 \leq X \leq 4) & \approx P\left(2.5<X^{\prime}<4.5\right) \\
& =P\left(0.5<X^{\prime}-2<2.5\right) \\
& =P\left(0.43<\frac{X^{\prime}-2}{\sqrt{4 / 3}}<2.17\right) \\
& =\Phi(2.17)-\Phi(0.43)=0.9850-0.6664=31.86 \% .
\end{aligned}
$$

(c) Draw a picture comparing your answers from parts (a) and (b).

Version B

Problem 1. Let X be a normal random variable with mean μ and variance σ^{2}.
(a) Tell me the probability density function f_{X}.

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

(b) Sketch the graph of f_{X}, showing the maximum and the points of inflection.

(c) Compute the probability $P(\mu-\sigma<X<\mu+2 \sigma)$.

Since $(X-\mu) / \sigma$ is standard normal, we have

$$
\begin{aligned}
P(\mu-\sigma<X<\mu+2 \sigma) & =P(-\sigma<X-\mu<2 \sigma) \\
& =P\left(-1<\frac{X-\mu}{\sigma}<2\right) \\
& =\Phi(2)-\Phi(-1) \\
& =\Phi(2)-[1-\Phi(1)] \\
& =0.9772-[1-0.8413]=81.85 \% .
\end{aligned}
$$

Problem 2. Let X be a continuous random variable with the following pdf:

$$
f_{X}(x)= \begin{cases}\frac{3}{2}\left(1-x^{2}\right) & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute $\mu=E[X]$ and $\sigma^{2}=\operatorname{Var}(X)$.

We have

$$
\mu=E[X]=\int_{0}^{1} x \cdot \frac{3}{2}\left(1-x^{2}\right) d x=\left.\frac{3}{2}\left(\frac{x^{2}}{2}-\frac{x^{4}}{4}\right)\right|_{0} ^{1}=3 / 8
$$

and

$$
E\left[X^{2}\right]=\int_{0}^{1} x^{2} \cdot \frac{3}{2}\left(1-x^{2}\right) d x=\left.\frac{3}{2}\left(\frac{x^{3}}{3}-\frac{x^{5}}{5}\right)\right|_{0} ^{1}=\frac{1}{5},
$$

hence $\sigma^{2}=\operatorname{Var}(X)=E\left[X^{2}\right]-\mu^{2}=1 / 5-(3 / 8)^{2}=19 / 320$.
(b) Compute the probability $P(\mu-\sigma<X<\mu+\sigma)$.

Since $\mu=3 / 8$ and $\sigma=\sqrt{9 / 320}=0.244$ we have

$$
\begin{aligned}
P(\mu-\sigma<X<\mu+\sigma) & =P(0.131<X<0.619) \\
& =\int_{0.131}^{0.619} \frac{3}{2}\left(1-x^{2}\right) d x \\
& =\left.\frac{3}{2}\left(x-\frac{x^{3}}{3}\right)\right|_{0.131} ^{0.619}=61.37 \%
\end{aligned}
$$

(c) Draw the graph of f_{X}, showing the region whose area you computed in part (b).

Problem 3. Let $Z \sim N(0,1)$ be a standard normal random variable.
(a) Find α such that $P(Z>0.64)=\alpha$ and draw a picture to illustrate your answer.

The area of the shaded region is $\alpha=1-\Phi(0.64)=1-0.7389=0.2611$:

(b) Find c such that $P(Z>c)=0.75$ and draw a picture to illustrate your answer.

We have $c=-0.675$. The area of the shaded region is 0.75 :

(c) Find d such that $P(|Z|>d)=0.25$ and draw a picture to illustrate your answer.

We have $d=1.15$. The area of the shaded region is 0.25 :

Problem 4. Let $X_{1}, X_{2}, \ldots, X_{20}$ be an iid sequence of random variables with

$$
\mu=E\left[X_{i}\right]=5 \quad \text { and } \quad \sigma^{2}=\operatorname{Var}\left(X_{i}\right)=4
$$

Consider the sum X and the average \bar{X} of these random variables:

$$
X=X_{1}+X_{2}+\cdots+X_{20} \quad \text { and } \quad \bar{X}=\frac{1}{20} \cdot X
$$

(a) Compute the numbers $E[X], \operatorname{Var}(X), E[\bar{X}]$ and $\operatorname{Var}(\bar{X})$.

$$
\begin{aligned}
E[X] & =20 \cdot \mu=100, \\
\operatorname{Var}(X) & =20 \cdot \sigma^{2}=80, \\
E[\bar{X}] & =\mu=5, \\
\operatorname{Var}(\bar{X}) & =\sigma^{2} / 20=4 / 20=1 / 5 .
\end{aligned}
$$

(b) Use the Central Limit Theorem to estimate the probability $P(X>110)$.

We assume that $(X-100) / \sqrt{80}$ is approximately standard normal, so that

$$
\begin{aligned}
P(X>110) & =P(X-100>10) \\
& =P\left(\frac{X-100}{\sqrt{80}}>1.12\right) \\
& \approx 1-\Phi(1.12)=1-0.8686=13.14 \% .
\end{aligned}
$$

(c) Use the Central Limit Theorem to estimate the probability $P(\bar{X}<4)$.

We assume that $(\bar{X}-5) / \sqrt{1 / 5}$ is approximately standard normal, so that

$$
\begin{aligned}
P(\bar{X}<4) & =P(\bar{X}-5<-1) \\
& =P\left(\frac{\bar{X}-6}{\sqrt{1 / 5}}<-2.24\right) \\
& \approx \Phi(-2.24)=1-\Phi(2.24)=1-0.9875=1.25 \% .
\end{aligned}
$$

Problem 5. Suppose that a coin with $P(H)=p=2 / 3$ is flipped $n=6$ times. Let X be the number of heads that show up.
(a) Compute the exact value of $P(3 \leq X \leq 4)$.

$$
\begin{aligned}
P(3 \leq X \leq 4) & =P(X=3)+P(X=4) \\
& =\binom{6}{3}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{3}+\binom{6}{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{2}=54.87 \% .
\end{aligned}
$$

(b) Compute an approximate value for $P(3 \leq X \leq 4)$ by integrating under a normal curve. Don't forget to use a continuity correction.

Let $X^{\prime} \sim N(n p, n p q)=N(4,4 / 3)$. Assuming that $X \approx X^{\prime}$ gives

$$
\begin{aligned}
P(3 \leq X \leq 4) & \approx P\left(2.5<X^{\prime}<4.5\right) \\
& =P\left(-1.5<X^{\prime}-4<0.5\right) \\
& =P\left(-1.30<\frac{X^{\prime}-2}{\sqrt{4 / 3}}<0.43\right) \\
& =\Phi(0.43)-\Phi(-1.30) \\
& =\Phi(0.43)+[1-\Phi(1.30)] \\
& =0.6664-[1-0.9032]=56.96 \% .
\end{aligned}
$$

(c) Draw a picture comparing your answers from parts (a) and (b).

