Version A

Problem 1. Let X, Y be discrete random variables with joint pmf defined as follows:

$X \backslash Y$	1	2
1	$2 / 9$	$1 / 9$
2	$4 / 9$	$2 / 9$

(a) Fill in the following tables:

k	1	2
$P(X=k)$	$\frac{3}{9}=$$\frac{1}{3}$ $\frac{6}{9}$	

ℓ	1	2
$P(Y=\ell)$	$\frac{6}{9}=$$\frac{2}{3}$	$\frac{3}{9}=\boxed{1}$

(b) Compute the expected values $E[X]$ and $E[Y]$.

$$
E[X]=(1) \frac{1}{3}+(2) \frac{2}{3}=\frac{5}{3} \quad \text { and } \quad E[Y]=(1) \frac{2}{3}+(2) \frac{1}{3}=\frac{4}{3}
$$

(c) Compute the mixed moment $E[X Y]$ and the covariance $\operatorname{Cov}(X, Y)$.

We use the formulas

$$
\begin{aligned}
E[X Y] & =\sum_{k, \ell} k \cdot \ell \cdot P(X=k, Y=\ell), \\
\operatorname{Cov}(X, Y) & =E[X Y]-E[X] \cdot E[Y],
\end{aligned}
$$

to compute

$$
E[X Y]=(1)(1) \frac{2}{9}+(1)(2) \frac{1}{9}+(2)(1) \frac{4}{9}+(2)(2) \frac{2}{9}=\frac{2+2+8+8}{9}=\frac{20}{9},
$$

$\operatorname{Cov}(X, Y)=E[X Y]-E[X] \cdot E[Y]=\frac{20}{9}-\frac{5}{3} \cdot \frac{4}{3}=\frac{20}{9}-\frac{20}{9}=0$.
In fact, the random variables X, Y are independent.
Problem 2. Let X, Y be random variables with the following moments:

$$
E[X]=1, \quad E\left[X^{2}\right]=2, \quad E[Y]=1, \quad E\left[Y^{2}\right]=3, \quad E[X Y]=2 .
$$

(a) Compute $E[X+5]$ and $\operatorname{Var}(X+5)$.

$$
\begin{aligned}
E[X+5] & =E[X]+5=1+5=6 \\
\operatorname{Var}(X+5) & =\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=2-1^{2}=1
\end{aligned}
$$

(b) Compute $\operatorname{Cov}(X, Y)$ and $\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \cdot \sigma_{Y}}$.

First we have

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[X Y]-E[X] \cdot E[Y]=2-1^{2}=1, \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2}=2-1^{2}=1, \\
\operatorname{Var}(Y) & =E\left[Y^{2}\right]-E[Y]^{2}=3-1^{2}=2
\end{aligned}
$$

Then we have

$$
\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \cdot \sqrt{\operatorname{Var}(Y)}}=\frac{1}{\sqrt{1} \cdot \sqrt{2}}=\frac{1}{\sqrt{2}} .
$$

(c) Compute $E[X+Y]$ and $\operatorname{Var}(X+Y)$.

$$
\begin{aligned}
E[X+Y] & =E[X]+E[Y]=1+1=2 \\
\operatorname{Var}(X+Y) & =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \cdot \operatorname{Cov}(X, Y)=1+2+2 \cdot 1=5
\end{aligned}
$$

Problem 3. Start rolling a fair 6 -sided die and stop when you see " 1 " for the first time. Let X be the number of rolls you did.
(a) Write down a formula for the probability mass function $P(X=k)$.

This is a geometric random variable with $p=1 / 6$. Hence the pmf is

$$
P(X=k)=q^{k-1} p=\left(\frac{5}{6}\right)^{k-1}\left(\frac{1}{6}\right) .
$$

(b) Let $\mu=E[X]$ and compute the probability $P(\mu-2 \leq X \leq \mu+2)$.

The expected value is $\mu=E[X]=1 / p=6$. Then we have

$$
\begin{aligned}
P(\mu-2 \leq X \leq \mu+2) & =P(4 \leq X \leq 8) \\
& =q^{3}-q^{8} \\
& =\left(\frac{5}{6}\right)^{3}-\left(\frac{5}{6}\right)^{8}=34.6 \% .
\end{aligned}
$$

(c) Draw the line graph of the $\operatorname{pmf} P(X=k)$. Show the interval $\mu \pm 2$ in your picture.

Problem 4. Suppose that an urn contains 3 red and 5 green balls. Draw 4 balls with replacement from the urn and let X be the number of red balls you get.
(a) Write down a formula for the probability mass function $P(X=k)$.

If the balls are mixed after replacement then this random variable is binomial:

$$
P(X=k)=\binom{4}{k}\left(\frac{3}{8}\right)^{k}\left(\frac{5}{8}\right)^{4-k}
$$

(b) Tell me the expected value $E[X]$ and the variance $\operatorname{Var}(X)$. [Hint: Don't do a big calculation.]

We know the expected value and the variance of a binomial:

$$
\begin{aligned}
& E[X]=n p=4 \cdot \frac{3}{8}=\frac{12}{8}=\frac{3}{2}, \\
& \operatorname{Var}(X)=n p q=4 \cdot \frac{3}{8} \cdot \frac{5}{8}=\frac{60}{64}=\frac{15}{16} .
\end{aligned}
$$

(c) Use part (b) to compute the second moment $E\left[X^{2}\right]$.

$$
\begin{aligned}
E\left[X^{2}\right]-E[X]^{2} & =\operatorname{Var}(X) \\
E\left[X^{2}\right] & =\operatorname{Var}(X)+E[X]^{2} \\
& =\frac{15}{16}+\left(\frac{3}{2}\right)^{2}=\frac{51}{16}
\end{aligned}
$$

Problem 5. Suppose that an urn contains 2 red and 3 green balls. Draw 2 balls without replacement from the urn and consider the following random variables:

$$
X_{1}=\left\{\begin{array}{ll}
1 & \text { if } 1 \text { st ball is red, } \\
0 & \text { if } 1 \text { st ball is green, }
\end{array} \quad X_{2}= \begin{cases}1 & \text { if } 2 \text { nd ball is red } \\
0 & \text { if } 2 \text { nd ball is green } .\end{cases}\right.
$$

Let $X=X_{1}+X_{2}$ be the total number of red balls that you get.
(a) Compute the variances $\operatorname{Var}\left(X_{1}\right)$ and $\operatorname{Var}\left(X_{2}\right)$.

Each of these is Bernoulli with $p=2 / 5$. Hence

$$
\operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(X_{2}\right)=p q=\frac{2}{5} \cdot \frac{3}{5}=\frac{6}{25} .
$$

(b) Compute the probability mass function of X.

This is a hypergeometric random variable.

k	0	1	2
$P(X=k)$	$\frac{\left.\binom{2}{0} \begin{array}{l}3 \\ 2\end{array}\right)}{\binom{5}{2}}=\frac{3}{10}$	$\frac{\binom{2}{1}\binom{3}{1}}{\binom{5}{2}}=\frac{6}{10}$	$\frac{\binom{2}{2}\binom{3}{0}}{\binom{5}{2}}=\frac{1}{10}$

(c) Use parts (a) and (b) to compute the covariance $\operatorname{Cov}\left(X_{1}, X_{2}\right)$. [Hint: It's not zero.]

First solution. From (b) we have

$$
\begin{aligned}
E[X] & =(0) \frac{3}{10}+(1) \frac{6}{10}+(2) \frac{1}{10}=8 / 10, \\
E\left[X^{2}\right] & =(0)^{2} \frac{3}{10}+(1)^{2} \frac{6}{10}+(2)^{2} \frac{1}{10}=1, \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2}=1-(8 / 10)^{2}=36 / 100=9 / 25 .
\end{aligned}
$$

and then

$$
\begin{aligned}
\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+2 \cdot \operatorname{Cov}\left(X_{1}, X_{2}\right) & =\operatorname{Var}(X) \\
2 \cdot \operatorname{Cov}\left(X_{1}, X_{2}\right) & =\operatorname{Var}(X)-\operatorname{Var}\left(X_{1}\right)-\operatorname{Var}\left(X_{2}\right) \\
2 \cdot \operatorname{Cov}\left(X_{1}, X_{2}\right) & =9 / 25-6 / 25-6 / 25=-3 / 25 \\
\operatorname{Cov}\left(X_{1}, X_{2}\right) & =-3 / 50 .
\end{aligned}
$$

Second solution. The expected value of a Bernoulli is $E\left[X_{1}\right]=E\left[X_{2}\right]=p=2 / 5$ and the joint distribution of X_{1} and X_{2} is

$X_{1} \backslash X_{2}$	0	1
0	$3 / 10$	$(3 / 5)(2 / 4)$
1	$(2 / 5)(3 / 4)$	$1 / 10$

This implies that $E\left[X_{1} X_{2}\right]=0+0+0+1 / 10$ and hence

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] \cdot E\left[X_{2}\right]=\frac{1}{10}-\frac{2}{5} \cdot \frac{2}{5}=-\frac{3}{50} .
$$

Version B

Problem 1. Let X, Y be discrete random variables with joint pmf defined as follows:

$X \backslash Y$	1	2
1	$2 / 12$	$1 / 12$
2	$6 / 12$	$3 / 12$

(a) Fill in the following tables:

k	1	2
$P(X=k)$	$\frac{3}{12}=$$\frac{1}{4}$ $\frac{9}{12}=\boxed{3}$	

ℓ	1	2
$P(Y=\ell)$	$\frac{8}{12}=$$\frac{2}{3}$ $\frac{4}{12}=\boxed{\frac{1}{3}}$	

(b) Compute the expected values $E[X]$ and $E[Y]$.

$$
E[X]=(1) \frac{1}{4}+(2) \frac{3}{4}=\frac{7}{4} \quad \text { and } \quad E[Y]=(1) \frac{2}{3}+(2) \frac{1}{3}=\frac{4}{3}
$$

(c) Compute the mixed moment $E[X Y]$ and the covariance $\operatorname{Cov}(X, Y)$.

We use the formulas

$$
\begin{aligned}
E[X Y] & =\sum_{k, \ell} k \cdot \ell \cdot P(X=k, Y=\ell), \\
\operatorname{Cov}(X, Y) & =E[X Y]-E[X] \cdot E[Y],
\end{aligned}
$$

to compute
$E[X Y]=(1)(1) \frac{2}{12}+(1)(2) \frac{1}{12}+(2)(1) \frac{6}{12}+(2)(2) \frac{3}{12}=\frac{2+2+12+12}{12}=\frac{7}{3}$,
$\operatorname{Cov}(X, Y)=E[X Y]-E[X] \cdot E[Y]=\frac{7}{3}-\frac{7}{4} \cdot \frac{4}{3}=\frac{7}{3}-\frac{7}{3}=0$.
In fact, the random variables X, Y are independent.
Problem 2. Let X, Y be random variables with the following moments:

$$
E[X]=1, \quad E\left[X^{2}\right]=3, \quad E[Y]=1, \quad E\left[Y^{2}\right]=2, \quad E[X Y]=2 .
$$

(a) Compute $E[X+4]$ and $\operatorname{Var}(X+4)$.

$$
\begin{aligned}
E[X+5] & =E[X]+4=1+4=5 \\
\operatorname{Var}(X+5) & =\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=3-1^{2}=2
\end{aligned}
$$

(b) Compute $\operatorname{Cov}(X, Y)$ and $\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \cdot \sigma_{Y}}$.

First we have

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[X Y]-E[X] \cdot E[Y]=2-1^{2}=1, \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2}=3-1^{2}=2, \\
\operatorname{Var}(Y) & =E\left[Y^{2}\right]-E[Y]^{2}=2-1^{2}=1 .
\end{aligned}
$$

Then we have

$$
\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \cdot \sqrt{\operatorname{Var}(Y)}}=\frac{1}{\sqrt{2} \cdot \sqrt{1}}=\frac{1}{\sqrt{2}} .
$$

(c) Compute $E[X+Y]$ and $\operatorname{Var}(X+Y)$.

$$
\begin{aligned}
E[X+Y] & =E[X]+E[Y]=1+1=2 \\
\operatorname{Var}(X+Y) & =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \cdot \operatorname{Cov}(X, Y)=2+1+2 \cdot 1=5
\end{aligned}
$$

Problem 3. Start rolling a fair 4 -sided die and stop when you see " 1 " for the first time. Let X be the number of rolls you did.
(a) Write down a formula for the probability mass function $P(X=k)$.

This is a geometric random variable with $p=1 / 4$. Hence the pmf is

$$
P(X=k)=q^{k-1} p=\left(\frac{3}{4}\right)^{k-1}\left(\frac{1}{4}\right) .
$$

(b) Let $\mu=E[X]$ and compute the probability $P(\mu-2 \leq X \leq \mu+2)$.

The expected value is $\mu=E[X]=1 / p=4$. Then we have

$$
\begin{aligned}
P(\mu-2 \leq X \leq \mu+2) & =P(2 \leq X \leq 6) \\
& =q^{1}-q^{6} \\
& =\left(\frac{3}{4}\right)^{1}-\left(\frac{3}{4}\right)^{6}=57.2 \% .
\end{aligned}
$$

(c) Draw the line graph of the $\operatorname{pmf} P(X=k)$. Show the interval $\mu \pm 2$ in your picture.

Problem 4. Suppose that an urn contains 5 red and 3 green balls. Draw 4 balls with replacement from the urn and let X be the number of red balls you get.
(a) Write down a formula for the probability mass function $P(X=k)$.

If the balls are mixed after replacement then this random variable is binomial:

$$
P(X=k)=\binom{4}{k}\left(\frac{5}{8}\right)^{k}\left(\frac{3}{8}\right)^{4-k} .
$$

(b) Tell me the expected value $E[X]$ and the variance $\operatorname{Var}(X)$. [Hint: Don't do a big calculation.]

We know the expected value and the variance of a binomial:

$$
\begin{aligned}
E[X] & =n p=4 \cdot \frac{5}{8}=\frac{20}{8}=\frac{5}{2}, \\
\operatorname{Var}(X) & =n p q=4 \cdot \frac{5}{8} \cdot \frac{3}{8}=\frac{60}{64}=\frac{15}{16} .
\end{aligned}
$$

(c) Use part (b) to compute the second moment $E\left[X^{2}\right]$.

$$
\begin{aligned}
E\left[X^{2}\right]-E[X]^{2} & =\operatorname{Var}(X) \\
E\left[X^{2}\right] & =\operatorname{Var}(X)+E[X]^{2} \\
& =\frac{15}{16}+\left(\frac{5}{2}\right)^{2}=\frac{115}{16}
\end{aligned}
$$

Problem 5. Suppose that an urn contains 3 red and 2 green balls. Draw 2 balls without replacement from the urn and consider the following random variables:

$$
X_{1}=\left\{\begin{array}{ll}
1 & \text { if } 1 \text { st ball is red, } \\
0 & \text { if 1st ball is green, }
\end{array} \quad X_{2}= \begin{cases}1 & \text { if } 2 \text { nd ball is red } \\
0 & \text { if } 2 \text { nd ball is green }\end{cases}\right.
$$

Let $X=X_{1}+X_{2}$ be the total number of red balls that you get.
(a) Compute the variances $\operatorname{Var}\left(X_{1}\right)$ and $\operatorname{Var}\left(X_{2}\right)$.

Each of these is Bernoulli with $p=3 / 5$. Hence

$$
\operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(X_{2}\right)=p q=\frac{3}{5} \cdot \frac{2}{5}=\frac{6}{25} .
$$

(b) Compute the probability mass function of X.

This is a hypergeometric random variable.

k	0	1	2
$P(X=k)$	$\frac{\binom{3}{0}\binom{2}{2}}{\binom{5}{2}}=\frac{1}{10}$	$\frac{\binom{3}{1}\binom{2}{1}}{\binom{5}{2}}=\frac{6}{10}$	$\frac{\binom{3}{2}\binom{2}{0}}{\binom{5}{2}}=\frac{3}{10}$

(c) Use parts (a) and (b) to compute the covariance $\operatorname{Cov}\left(X_{1}, X_{2}\right)$. [Hint: It's not zero.]

First solution. From (b) we have

$$
\begin{aligned}
E[X] & =(0) \frac{1}{10}+(1) \frac{6}{10}+(2) \frac{3}{10}=12 / 10, \\
E\left[X^{2}\right] & =(0)^{2} \frac{1}{10}+(1)^{2} \frac{6}{10}+(2)^{2} \frac{3}{10}=18 / 10, \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2}=18 / 10-(12 / 10)^{2}=36 / 100=9 / 25 .
\end{aligned}
$$

and then

$$
\begin{aligned}
\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+2 \cdot \operatorname{Cov}\left(X_{1}, X_{2}\right) & =\operatorname{Var}(X) \\
2 \cdot \operatorname{Cov}\left(X_{1}, X_{2}\right) & =\operatorname{Var}(X)-\operatorname{Var}\left(X_{1}\right)-\operatorname{Var}\left(X_{2}\right) \\
2 \cdot \operatorname{Cov}\left(X_{1}, X_{2}\right) & =9 / 25-6 / 25-6 / 25=-3 / 25 \\
\operatorname{Cov}\left(X_{1}, X_{2}\right) & =-3 / 50 .
\end{aligned}
$$

Second solution. The expected value of a Bernoulli is $E\left[X_{1}\right]=E\left[X_{2}\right]=p=3 / 5$ and the joint distribution of X_{1} and X_{2} is

$X_{1} \backslash X_{2}$	0	1
0	$1 / 10$	$(2 / 5)(3 / 4)$
1	$(3 / 5)(2 / 4)$	$3 / 10$

This implies that $E\left[X_{1} X_{2}\right]=0+0+0+3 / 10$ and hence

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] \cdot E\left[X_{2}\right]=\frac{3}{10}-\frac{3}{5} \cdot \frac{3}{5}=-\frac{3}{50} .
$$

