Version A

Problem 1. Let S be the sample space of an experiment with ten equally likely outcomes, so that $\# S=10$. Now consider two events $E, F \subseteq S$ such that

$$
\# E=5, \quad \# F=6 \quad \text { and } \quad \#(E \cap F)=3
$$

(a) Find the number of outcomes in the union: $\#(E \cup F)$.

$$
\#(E \cup F)=\# E+\# F-\#(E \cap F)=5+6-3=8 .
$$

(b) Find the probability that E or F happens.

$$
P(E \cup F)=\frac{\#(E \cup F)}{\# S}=\frac{8}{10}=80 \% .
$$

(c) Find the conditional probability that E happens, assuming that F happens.

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\#(E \cap F) / \# S}{\# F / \# S}=\frac{\#(E \cap F)}{\# F}=\frac{3}{6}=50 \% .
$$

Problem 2.

(a) Draw Pascal's Triangle down to the 4th row. (The top row is the 0th row.)

					1			
			1		1			
		1		2		1		
	1		3		3		1	
1		4		6		4		1

(b) Suppose a fair coin is flipped 4 times and let X be the number of heads that appear. Use part (a) to fill in the following table:

k	0	1	2	3	4
$P(X=k)$	$\binom{4}{0} / 2^{4}$	$\binom{4}{1} / 2^{4}$	$\binom{4}{2} / 2^{4}$	$\binom{4}{3} / 2^{4}$	$\binom{4}{4} / 2^{4}$
	$1 / 16$	$4 / 16$	$6 / 16$	$4 / 16$	$1 / 16$

(c) Consider a coin with P (heads) $=1 / 3$. Suppose the coin is flipped 4 times and let Y be the number of heads that appear. Use part (a) to fill in the following table:

k	0	1	2	3	4
$P(Y=k)$	$\binom{4}{0}\left(\frac{1}{3}\right)^{0}\left(\frac{2}{3}\right)^{4}$	$\binom{4}{1}\left(\frac{1}{3}\right)^{1}\left(\frac{2}{3}\right)^{3}$	$\binom{4}{2}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{2}$	$\binom{4}{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{1}$	$\binom{4}{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{0}$
	$16 / 81$	$32 / 81$	$24 / 81$	$8 / 81$	$1 / 81$

Problem 3. A standard deck contains 13 hearts and 13 diamonds (called red cards), 13 spades and 13 clubs (called black cards). Suppose that 5 cards are drawn without replacement from a standard deck.
(a) Find the probability of getting 3 hearts and 2 spades.

$$
P(3 \text { hearts, } 2 \text { spades })=\frac{\binom{13}{3}\binom{13}{2}}{\binom{52}{5}}=0.9 \% .
$$

(b) Find the probability of getting 3 hearts, 1 spade and 1 club.

$$
P(3 \text { hearts, } 1 \text { spade, } 1 \text { club })=\frac{\binom{13}{3}\binom{13}{1}\binom{13}{1}}{\binom{52}{5}}=1.9 \% .
$$

(c) Find the probability of getting 3 hearts and 2 black cards.

$$
P(3 \text { hearts, } 2 \text { black cards })=\frac{\binom{13}{3}\binom{26}{2}}{\binom{52}{5}}=3.6 \% .
$$

Problem 4. A fair 6 -sided die is rolled 4 times.
(a) What is the probability that the numbers $2,3,4,5$ show up, in some order?

$$
P(2,3,4,5 \text { in some order })=\frac{\binom{4}{1,1,1,1}}{6^{4}}=\frac{4!/(1!1!1!1!)}{6^{4}}=\frac{24}{6^{4}}=1.9 \% .
$$

(b) What is the probability that the numbers $2,2,3,3$ show up, in some order?

$$
P(2,2,3,3 \text { in some order })=\frac{\binom{4}{2,2}}{6^{4}}=\frac{4!/(2!2!)}{6^{4}}=\frac{6}{6^{4}}=0.5 \% .
$$

(c) What is the probability that the same number shows up four times? [Hint: How many ways could this happen?]

$$
P(\text { all the same })=\frac{6}{6^{4}}=0.5 \% .
$$

Problem 5. There are two bowls on a table. The first bowl contains 1 red chip and 2 white chips. The second bowl contains 2 red chips and 3 white chips. Your friend walks up to the table and chooses one chip. Consider the events:

$$
\begin{aligned}
R & =\{\text { the chip is red }\} \\
B_{1} & =\{\text { the chip comes from the first bowl }\} \\
B_{2} & =\{\text { the chip comes from the second bowl }\}
\end{aligned}
$$

(a) Compute the probabilities $P\left(R \mid B_{1}\right)$ and $P\left(R \mid B_{2}\right)$.

$$
P\left(R \mid B_{1}\right)=\frac{1}{1+2}=\frac{1}{3} \quad \text { and } \quad P\left(R \mid B_{2}\right)=\frac{2}{2+3}=\frac{2}{5} .
$$

(b) Assume that the bowls have probabilities $P\left(B_{1}\right)=1 / 3$ and $P\left(B_{2}\right)=2 / 3$. In this case, compute the probability $P(R)$ that your friend gets a red chip.

$$
\begin{aligned}
P(R) & =P\left(B_{1} \cap R\right)+P\left(B_{2} \cap R\right) \\
& =P\left(B_{1}\right) \cdot P\left(R \mid B_{1}\right)+P\left(B_{2}\right) \cdot P\left(R \mid B_{2}\right) \\
& =\frac{1}{3} \cdot \frac{1}{3}+\frac{2}{3} \cdot \frac{2}{5}=\frac{17}{45}=37.8 \%
\end{aligned}
$$

(c) After performing the experiment in secret, your friend shows you that the chip is red. Compute the probability $P\left(B_{1} \mid R\right)$ that this red chip came from the first bowl.

$$
P\left(B_{1} \mid R\right)=\frac{P\left(B_{1} \cap R\right)}{P(R)}=\frac{P\left(B_{1}\right) \cdot P\left(R \mid B_{1}\right)}{P(R)}=\frac{(1 / 3)(1 / 3)}{17 / 45}=\frac{5}{17}=29.4 \% .
$$

Version B

Problem 1. Let S be the sample space of an experiment with ten equally likely outcomes, so that $\# S=10$. Now consider two events $E, F \subseteq S$ such that

$$
\# E=4, \quad \# F=5 \quad \text { and } \quad \#(E \cap F)=3
$$

(a) Find the number of outcomes in the union: $\#(E \cup F)$.

$$
\#(E \cup F)=\# E+\# F-\#(E \cap F)=4+5-3=6
$$

(b) Find the probability that E or F happens.

$$
P(E \cup F)=\frac{\#(E \cup F)}{\# S}=\frac{6}{10}=60 \% .
$$

(c) Find the conditional probability that E happens, assuming that F happens.

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\#(E \cap F) / \# S}{\# F / \# S}=\frac{\#(E \cap F)}{\# F}=\frac{3}{5}=60 \% .
$$

Problem 2.

(a) Draw Pascal's Triangle down to the 4th row. (The top row is the 0th row.)

(b) Suppose a fair coin is flipped 4 times and let X be the number of heads that appear. Use part (a) to fill in the following table:

k	0	1	2	3	4
$P(X=k)$	$\binom{4}{0} / 2^{4}$	$\binom{4}{1} / 2^{4}$	$\binom{4}{2} / 2^{4}$	$\binom{4}{3} / 2^{4}$	$\binom{4}{4} / 2^{4}$
	$1 / 16$	$4 / 16$	$6 / 16$	$4 / 16$	$1 / 16$

(c) Consider a coin with P (heads) $=1 / 4$. Suppose the coin is flipped 4 times and let Y be the number of heads that appear. Use part (a) to fill in the following table:

k	0	1	2	3	4
$P(Y=k)$	$\binom{4}{0}\left(\frac{1}{4}\right)^{0}\left(\frac{3}{4}\right)^{4}$	$\binom{4}{1}\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{3}$	$\binom{4}{2}\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{2}$	$\binom{4}{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{1}$	$\binom{4}{4}\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{0}$
	$81 / 256$	$108 / 256$	$54 / 256$	$12 / 256$	$1 / 256$

Problem 3. A standard deck contains 13 hearts and 13 diamonds (called red cards), 13 spades and 13 clubs (called black cards). Suppose that 5 cards are drawn without replacement from a standard deck.
(a) Find the probability of getting 2 hearts and 3 spades.

$$
P(2 \text { hearts, } 3 \text { spades })=\frac{\binom{13}{2}\binom{13}{3}}{\binom{52}{5}}=0.9 \% .
$$

(b) Find the probability of getting 2 hearts, 2 spades and 1 club.

$$
P(2 \text { hearts, } 2 \text { spades, } 1 \text { club })=\frac{\binom{13}{2}\binom{13}{2}\binom{13}{1}}{\binom{52}{5}}=3.0 \% .
$$

(c) Find the probability of getting 2 hearts and 3 black cards.

$$
P(2 \text { hearts, } 3 \text { black cards })=\frac{\binom{13}{2}\binom{26}{3}}{\binom{52}{5}}=7.8 \%
$$

Problem 4. A fair 6-sided die is rolled 4 times.
(a) What is the probability that the numbers $2,3,4,5$ show up, in some order?

$$
P(2,3,4,5 \text { in some order })=\frac{\binom{4}{1,1,1,1}}{6^{4}}=\frac{4!/(1!1!1!1!)}{6^{4}}=\frac{24}{6^{4}}=1.9 \%
$$

(b) What is the probability that the numbers $2,2,3,4$ show up, in some order?

$$
P(2,2,3,4 \text { in some order })=\frac{\binom{4}{2,1,1}}{6^{4}}=\frac{4!/(2!1!1!)}{6^{4}}=\frac{12}{6^{4}}=0.9 \% .
$$

(c) What is the probability that the same number shows up four times? [Hint: How many ways could this happen?]

$$
P(\text { all the same })=\frac{6}{6^{4}}=0.5 \% .
$$

Problem 5. There are two bowls on a table. The first bowl contains 1 red chip and 3 white chips. The second bowl contains 2 red chips and 4 white chips. Your friend walks up to the table and chooses one chip. Consider the events:

$$
\begin{aligned}
R & =\{\text { the chip is red }\} \\
B_{1} & =\{\text { the chip comes from the first bowl }\} \\
B_{2} & =\{\text { the chip comes from the second bowl }\} .
\end{aligned}
$$

(a) Compute the probabilities $P\left(R \mid B_{1}\right)$ and $P\left(R \mid B_{2}\right)$.

$$
P\left(R \mid B_{1}\right)=\frac{1}{1+3}=\frac{1}{4} \quad \text { and } \quad P\left(R \mid B_{2}\right)=\frac{2}{2+4}=\frac{2}{6} .
$$

(b) Assume that the bowls have probabilities $P\left(B_{1}\right)=1 / 3$ and $P\left(B_{2}\right)=2 / 3$. In this case, compute the probability $P(R)$ that your friend gets a red chip.

$$
\begin{aligned}
P(R) & =P\left(B_{1} \cap R\right)+P\left(B_{2} \cap R\right) \\
& =P\left(B_{1}\right) \cdot P\left(R \mid B_{1}\right)+P\left(B_{2}\right) \cdot P\left(R \mid B_{2}\right) \\
& =\frac{1}{3} \cdot \frac{1}{4}+\frac{2}{3} \cdot \frac{2}{6}=\frac{11}{36}=30.6 \%
\end{aligned}
$$

(c) After performing the experiment in secret, your friend shows you that the chip is red. Compute the probability $P\left(B_{1} \mid R\right)$ that this red chip came from the first bowl.

$$
P\left(B_{1} \mid R\right)=\frac{P\left(B_{1} \cap R\right)}{P(R)}=\frac{P\left(B_{1}\right) \cdot P\left(R \mid B_{1}\right)}{P(R)}=\frac{(1 / 3)(1 / 4)}{11 / 36}=\frac{3}{11}=27.3 \% .
$$

