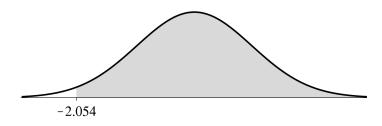
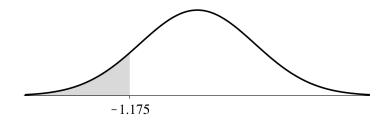
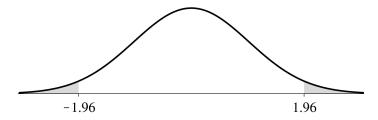
- **1.** Let $Z \sim N(0, 1)$. Use the attached tables to solve for a.
 - (a) P(Z > a) = 98%
 - (b) P(Z < a) = 12%
 - (c) P(|Z| > a) = 5%
 - (d) P(|Z| < a) = 50%
- (a): There is 98% to the right of -2.054:



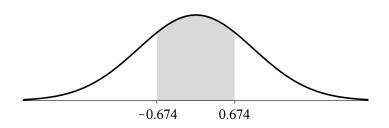
(b): There is 12% to the left of -1.175:



(c): There is 5% where Z < -1.96 or Z > 1.96 (i.e., there is 2.5% in each tail):



(d): There is 50% where -0.674 < Z < 0.674:

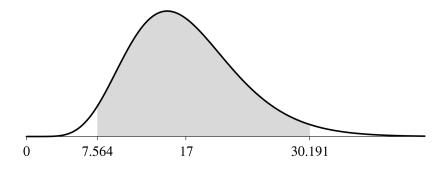


2. Let $Q \sim \chi^2(17)$. Use the attached tables to solve the following.

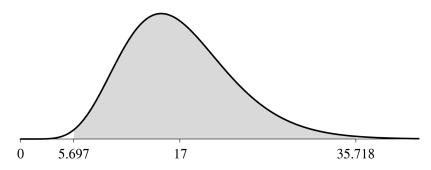
- (a) Find numbers a, b such that P(a < Q < b) = 95%.
- (b) Find numbers a, b such that P(a < Q < b) = 99%.

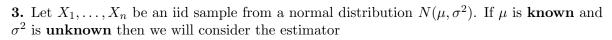
Remark: These problems have infinitely many possible answers, but only one answer can be found using the attached table.

(a): If we assume that each tail has the same probability 2.75% then $a = \chi^2_{97.5\%}(17) = 7.564$ and $b = \chi^2_{2.75\%}(17) = 30.191$:



(b): If we assume that each tail has the same probability 0.5% then $a = \chi^2_{99.5\%}(17) = 5.695$ and $b = \chi^2_{0.5\%}(17) = 35.718$:





$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2.$$

Show that $E[\hat{\sigma}^2] = \sigma^2$. [Hint: First show that $E[X_i^2] = \mu^2 + \sigma^2$. Then use linearity.]

Since $X_i \sim N(\mu, \sigma^2)$ for each *i* we have $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$, hence

$$E[X_i^2] - E[X_i]^2 = Var(X_i)$$

$$E[X_i^2] - \mu^2 = \sigma^2$$

$$E[X_i^2] = \mu^2 + \sigma^2.$$

Using this fact, we compute the expected value of $\hat{\sigma}^2$:

$$E\left[\hat{\sigma}^{2}\right] = E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}\right]$$

$$= \frac{1}{n}E\left[\sum_{i=1}^{n}(X_{i}-\mu)^{2}\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[(X_{i}-\mu)^{2}\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[X_{i}^{2}-2\mu X_{i}+\mu^{2}\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}\left(E\left[X_{i}^{2}\right]-2\mu E[X_{i}]+\mu^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\left(E\left[X_{i}^{2}\right]-2\mu\mu+\mu^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\left(\mu^{2}+\sigma^{2}-2\mu^{2}+\mu^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\left(\sigma^{2}\right)$$

$$= \frac{1}{n}\cdot n\sigma^{2}$$

$$= \sigma^{2}.$$

In other words, if the population mean μ is known then we can use $\hat{\sigma}^2$ as an unbiased estimator for the unknown population variance σ^2 . This situation rarely arises in practice.

4. Let Z_1, \ldots, Z_n be an iid sample from a standard normal distribution N(0, 1) and define

$$Q = Z_1^2 + Z_2^2 + \dots + Z_n^2.$$

- (a) Compute E[Q].
- (b) Assuming that $Z \sim N(0,1)$ implies $E[Z^4] = 3$, compute Var(Q).

(a): Since $Z_i \sim N(0,1)$ we know that E[Z] = 0 and Var(Z) = 1, hence $E[Z^2] = Var(Z) - E[Z]^2 = 1$. It follows that

$$E[Q] = E[Z_1^2 + Z_2^2 + \dots + Z_n^2]$$

= $E[Z_1^2] + E[Z_2^2] + \dots + E[Z_n^2]$
= $1 + 1 + \dots + 1$
= n .

(b): If $Z \sim N(0, 1)$ then we will just assume that $E[Z^4] = 3$, which is actually quite tricky to prove. Then from the remarks in part (a) we have

$$Var(Z^{2}) = E[(Z^{2})^{2}] - E[Z^{2}]^{2}$$
$$= E[Z^{4}] - E[Z^{2}]^{2}$$
$$= 3 - 1^{2}$$
$$- 2$$

Finally, since the random variables Z_i are independent, we have

$$Var(Q) = Var(Z_1^2 + Z_2^2 + \dots + Z_n^2)$$

= Var(Z_1^2) + Var(Z_2^2) + \dots + Var(Z_n^2)
= 2 + 2 + \dots + 2
= 2n.

In other words, we have shown that a chi-squared random variable with n degrees of freedom has mean n and variance 2n.

5. Let p be the unknown probability of heads for a certain coin. Before performing any experiments we assume that $H_0 = "p = 1/2"$ is true. If you flip the coin 100 times and let Y be the number of heads, what values of Y will cause you to reject H_0 in favor of $H_1 = "p \neq 1/2"$ at the 99% level of confidence?

We will use the sample proportion $\hat{p} = Y/n$ to estimate the unknown probability p. When testing $H_0 = "p = p_0"$ against $H_1 = "p \neq p_0"$ the rejection region is

$$|\hat{p} - p_0| > z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

In our case we have n = 100, $p_0 = 1/2$ and $\hat{p} = Y/100$. At the 99% level of confidence, or $\alpha = 1\%$ of significance, we have $z_{\alpha/2} = z_{0.5\%} = 2.576$, so the rejection region becomes

$$\begin{aligned} \left| \frac{Y}{100} - \frac{1}{2} \right| &> 2.576 \sqrt{\frac{(1/2)(1 - 1/2)}{100}} \\ \left| \frac{Y}{100} - \frac{1}{2} \right| &> 2.576 \sqrt{\frac{1}{400}} \\ \left| \frac{Y}{100} - \frac{1}{2} \right| &> \frac{2.576}{20} \\ \left| Y - 50 \right| &> \frac{2.576 \cdot 100}{20} \\ \left| Y - 50 \right| &> 12.879. \end{aligned}$$

Therefore we should reject "p = 1/2" in favor of " $p \neq 1/2$ " when Y > 50 + 12.879 or Y < 50 - 12.879. Since Y is a whole number this becomes $Y \ge 63$ or $Y \le 37$.

6. Let p be the unknown proportion of Americans who like broccoli. Suppose that we take a poll of n = 1000 Americans and Y = 300 tell us that they like broccoli. Use this information to compute $(1 - \alpha)100\%$ confidence intervals for p when $\alpha = 5\%$, 2.5% and 1%.

We will use the sample proportion $\hat{p} = Y/n$ to estimate the unknown population proportion p. The general two-sided $(1 - \alpha)100\%$ confidence interval is¹

$$\hat{p} - z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

which we prefer to write as

$$p = \hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}.$$

In our case we have n = 1000, Y = 300 and $\hat{p} = 0.3$, so the confidence interval becomes

$$p = 0.3 \pm z_{\alpha/2} \sqrt{\frac{0.3(1-0.3)}{1000}}$$

= 0.3 \pm z_{\alpha/2} \cdot 0.0145.

For $\alpha = 5\%$, 2.5% and 1% we have

$$z_{\alpha/2} = 1.96,$$

 $z_{\alpha/2} = 2.24,$
 $z_{\alpha/2} = 3.29,$

respectively. Thus we obtain the confidence intervals

$$p = 0.3 \pm 0.0284$$

 $p = 0.3 \pm 0.0325$
 $p = 0.3 \pm 0.0477$

In more friendly language:

$$p = 30\% \pm 2.84\%,$$

$$p = 30\% \pm 3.25\%,$$

$$p = 30\% \pm 4.77\%.$$

7. Assume that the weight of pumpkins grown on a certain farm is $N(\mu, \sigma^2)$. In order to estimate μ and σ^2 we weighed a random sample of 7 pumpkins (in pounds):

$ \begin{vmatrix} 10.7 & 8.5 & 9.1 & 10.3 & 13.7 & 9.7 & 9.3 \end{vmatrix} $
--

Use the attached tables to find 95% confidence intervals for μ and σ^2 .

First we compute the sample mean

$$\overline{X} = \frac{1}{7}(10.7 + 8.5 + 9.1 + 10.3 + 13.7 + 9.7 + 9.3) = 10.1857$$

and the sample standard deviation

$$S^{2} = \frac{1}{6} \left[(10.7 - \overline{X})^{2} + \dots + (9.3 - \overline{X})^{2} \right] = 2.9448$$

The general symmetric two-sided $(1 - \alpha)100\%$ confidence interval² for μ is

$$\overline{X} - t_{\alpha/2}\sqrt{S^2/n} < \mu < \overline{X} - t_{\alpha/2}\sqrt{S^2/n}$$

¹I didn't explicitly say that the confidence interval needed to be two-sided. It's okay if you gave a one-sided confidence interval $p > \hat{p} - z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ or $p < \hat{p} + z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$. ²Again, it's okay if you used a one-sided confidence interval.

and the only kind of $(1-\alpha)100\%$ confidence interval that we know for σ^2 is

$$\frac{(n-1)S^2}{\chi^2_{\alpha/2}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}}.$$

In each case the t and χ^2 values have n-1 degrees of freedom. For $\alpha = 5\%$ we have the values $t_{\alpha/2}(6) = 2.447$, $\chi^2_{1-\alpha/2}(6) = 1.237$, $\chi^2_{\alpha/2}(6) = 14.449$.

Therefore we obtain the 95% confidence intervals

$$8.60 < \mu < 11.77$$

and

$$1.22 < \sigma^2 < 14.23.$$

Remark: Chi-squared distributions will not be on the exam.