
Math 224 Fall 2021
Homework 5 Drew Armstrong

1. Let U be the uniform random variable on the interval [2, 5]. Compute the following:

P (U < 3), P (3 < U < 6), µ = E[U ], σ2 = Var(U), P (µ− σ < U < µ+ σ).

Recall that the density is

fU (x) =

{
1/3 2 ≤ x ≤ 5,

0 otherwise.

To compute each probability we must integrate the density. Since the density has a piecewise
formula we must break up the integral over the appropriate intervals:

P (U < 3) =

∫ 3

−∞
fU (x) dx =

∫ 2

−∞
0 dx+

∫ 3

2
1/3 dx = 0 + 1/3 = 1/3.

P (3 < U < 6) =

∫ 6

3
fU (x) dx =

∫ 5

3
1/3 dx+

∫ 6

5
0 dx = 2/3 + 0 = 2/3.

Remark: The integral of a constant is
∫ b
a c dx = c[x]ba = c(b− a). We can also view this as the

area of a rectangle with base b− a and height c.

The first moment is

E[U ] =

∫ ∞
−∞

x · fU (x) dx

=

∫ 5

2
x(1/3) dx

= (1/3)[x2/2]52

= (1/3)[25/2− 4/2]

= 7/2.

which we could have guessed because the distribution is symmetric about 3.5. The second
moment is

E[U2] =

∫ ∞
−∞

x2 · fU (x) dx

=

∫ 5

2
x2(1/3) dx

= (1/3)[x3/3]52

= (1/3)[125/3− 8/3]

= 13,

and the variance is

Var(U) = E[U2]− E[U ]2 = 13− (7/2)2 = 3/4.
1
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Finally, we compute the probability that U falls between µ− σ and µ+ σ. Sine µ = 7/2 and

σ =
√

3/4 we have

P (µ− σ < U < µ+ σ) = P (7/2−
√

3/4 < U < 7/2 +
√

3/4)

=

∫ 7/2+
√

3/4

7/2−
√

3/4
(1/3) dx

= (1/3)[x]
7/2+
√

3/4

7/2−
√

3/4

= (1/3)[(7/2 +
√

3/4)− (7/2−
√

3/4)]

= (1/3)[2
√

3/4]

≈ 57.7%.

Remark: We would have gotten the same result for the uniform random variable on any
interval. See the course notes for a proof.

2. Let X be a continuous random variable with the following density:

fX(x) =

{
c · sin(x) 0 ≤ x ≤ π,
0 otherwise.

(a) Find the value of the constant c.
(b) Compute µ = E[X] and σ2 = Var(X).1

(c) Compute P (µ− σ < X < µ+ σ).
(d) Draw a picture of the whole situation.

(a): The total mass is 1:

1 =

∫ π

0
c · sin(x) dx = c[− cos(x)]π0 = c[− cos(π) + cos(0)] = c[−(−1) + 1] = 2c.

Hence c = 2.

(b): If you don’t remember integration by parts you can use the provided formulas. The first
moment is

µ = E[X] =

∫ π

0
x · sin(x)/2 dx

= (1/2)[sin(x)− x cos(x)]π0

= (1/2)[sin(π)− π cos(π)− sin(0) + 0 cos(1)]

= (1/2)[0 + π − 0 + 0]

= π/2.

1Hint:
∫
x sin(x) dx = sin(x)− x cos(x) and

∫
x2 sin(x) dx = 2 cos(x) + 2x sin(x)− x2 cos(x).
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We could have guessed this because the density is symmetric about π/2. Now the second
moment and the variance:

E[X2] =

∫ π

0
x2 · sin(x)/2 dx

= (1/2)[2 cos(x) + 2x sin(x)− x2 cos(x)]π0

= (1/2)[2 cos(π) + 2π sin(π)− π2 cos(π)− 2 cos(0)− 2 · 0 sin(0)− 02 cos(0)]

= (1/2)[−2 + 0 + π2 − 2 + 0 + 0]

= (π2 − 4)/2

and

σ2 = Var(X) = E[X2]− E[X]2 =
π2 − 4

2
−
(π

2

)2
=
π2 − 8

4
.

(c): To compute P (µ− σ < X < µ+ σ) we should use a computer:

P (µ− σ < X < µ+ σ) =

∫ µ+σ

µ−σ
sin(x)/2 dx

= (1/2)[− cos(µ+ σ) + cos(µ− σ)]

≈ (1/2)[− cos(2.254) + cos(0.887)]

≈ 63.2%.

(d): Here is a picture:

3. Mean and Variance of a Normal Density. Let X ∼ N(µ, σ2) and Z ∼ N(0, 1). In
other words, suppose that X and Z have the following densities:

fX(x) =
1√

2πσ2
· e−(x−µ)2/2σ2

and fZ(z) =
1√
2π
· e−z2/2.

(a) Compute the expected value E[Z]. [Hint: Substitute u = −z2/2.]
(b) Compute the second moment E[Z2] and the variance Var(Z). [Hint: Use integration

by parts with u = −z and v = e−z
2/2. You may assume that

∫
fZ(z) dz = 1.]

(c) Use parts (a) and (b) to compute E[X] and Var(X). [Hint: We showed in class that
(X − µ)/σ and Z have the same density.]
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(a): The hint is fine, but maybe it’s easier to use the fact that z · fZ(z) is an odd function.
Hence for any symmetric interval we have∫ n

−n
z · fZ(z) dz = 0.

Then taking n→∞ gives

E[Z] =

∫ ∞
−∞

z · fZ(z) dz = lim
n→∞

∫ n

−n
z · fZ(z) dz = lim

n→∞
0 = 0.

(b): This one uses integration by parts. Let us take u = −z and v = e−z
2/2 so that

uv = −ze−z2/2, udv = z2e−z
2/2dz, and vdu = −e−z2/2dz.

Then since d(uv) = udv + vdu we have∫
udv +

∫
vdu = uv∫
udv = uv −

∫
vdu∫

z2e−z
2/2 dz = −ze−z2/2 +

∫
e−z

2/2 dz.

Now we divide everything by the constant
√

2π and integrate from −∞ to ∞:∫ ∞
−∞

z2 · e
−z2/2
√

2π
dz =

1√
2π
·
[
−ze−z2/2

]∞
−∞

+

∫ ∞
−∞

e−z
2/2

√
2π

dz

E[Z2] = 0 + 1.

This follows from the fact that ze−z
2/2 → 0 as z → ±∞ and

∫
fZ(z) dz = 1.2 Thus we obtain

the variance:
Var(Z) = E[Z2]− E[Z]2 = 1− 02 = 1.

(c): Now we consider the general normal density

fX(x) =
1√

2πσ2
· e−(x−µ)2/2σ2

.

Instead of performing bad integrals to compute E[X] and Var(X) we will use the fact (proved
in the notes) that (X − µ)/σ and Z have the same density. It follows that

E[X] = E[σZ + µ] = σE[Z] + µ = 0σ + µ = µ

and
Var(X) = Var(σZ + µ) = σ2Var(Z) = σ2 · 1 = σ2.

Remark: Of course this must be the case, but the proof was surprisingly difficult. It turns out
that normal random variables are easier to analyze with the technique of “moment generating
functions”. You will learn this technique in MTH 524.

4. Let Z ∼ N(0, 1) so that P (Z ≤ z) = Φ(z). Use the attached table to compute the following
probabilities:

2The limit has the indeterminate form ∞ · 0. I suppose this can be evaluated with L’Hopital’s rule, but we

can also use the heuristic that the exponential e−z2/2 goes to zero much faster than z goes to infinity, so the
exponential will win.
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(a) P (Z < −0.5)
(b) P (0.33 < Z < 1.25)
(c) P (Z > 1), P (Z > 2), P (Z > 3)
(d) P (|Z| < 1), P (|Z| < 2), P (|Z| < 3)

We repeatedly use the following facts:

P (z1 < Z < z2) = Φ(z2)− Φ(z1), Φ(z < Z) = 1− Φ(z), P (−z) = 1− Φ(z).

(a): P (Z < −0.5) = 1− Φ(0.5) = 1− (0.6915) = 30.85%

(b): P (0.33 < Z < 1.25) = Φ(1.25)− Φ(0.33) = (0.8944)− (0.6293) = %26.51

(c): For each we use the formula P (Z > z) = 1− Φ(z):

Φ(Z > 1) = 1− Φ(1) = 1− (0.8413) = 15.85%

Φ(Z > 2) = 1− Φ(2) = 1− (0.9772) = 2.28%

Φ(Z > 3) = 1− Φ(3) = 1− (0.9987) = 0.13%

(d): First we note that

P (|Z| < z) = P (−z < Z < z) = Φ(z)− Φ(−z) = Φ(z)− [1− Φ(z)] = 2Φ(z)− 1.

Thus we have:

Φ(|Z| < 1) = 2Φ(1)− 1 = 2(0.8413)− 1 = 68.26%

Φ(|Z| < 2) = 2Φ(2)− 1 = 2(0.9772)− 1 = 95.44%

Φ(|Z| < 3) = 2Φ(3)− 1 = 2(0.9987)− 1 = 99.74%

In summary, the probability that a normal random variable falls within 1, 2 or 3 standard
deviations of its mean is approximately 68%, 95% and 99.7%, respectively. Here is a picture:

5. De Moivre-Laplace Consider a coin with p = P (H) = 1/3. Suppose that you flip the
coin 100 times and let X be the number of times you get heads. Use the de Moive-Laplace
theorem to compute the probability

P (30 ≤ X ≤ 35).

Don’t forget to use a continuity correction.
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Since X has a binomial distribution we know that E[X] = np = 100/3 and Var(X) = npq =
200/9. Since neither of np or nq is close to zero it is reasonable to use the de Moivre-Laplace
theorem, which says that X ≈ X ′ where X ′ ∼ N(100/3, 200/9) is a normal random variable.
We use a continuity correction when transitioning from the discrete random variable X to
the continuous random variable X ′. Then we standardize X ′ to obtain a standard normal
distribution and look up the result in our table:

P (30 ≤ X ≤ 35) ≈ P (29.5 < X ′ < 35.5)

= P

(
29.5− 100/3√

200/9
<
X ′ − 100/3√

2003
<

35.5− 100/3√
200/9

)
≈ P (−0.81 < Z < 0.46)

= Φ(0.46)− Φ(−0.81)

= Φ(0.81)− [1− Φ(0.46)]

= (0.7910)− [1− (0.6772)]

= 46.82%.

Here is a picture. The area under the curve between 29.5 and 35.5 is an approximation for
the area of the rectangles centered on 30 through 35:

6. Central Limit Theorem. Let X1, X2, X3, . . . , X1000 be a sequence of iid random vari-
ables, each with mean µ = 600 and variance σ2 = 40. Consider the sample mean

X = (X1 +X2 + · · ·+X1000)/1000.

Use the central limit theorem to estimate the probability that X falls between 599.9 and
600.1. [Remark: You should not use a continuity correction because the variables Xi are not
necessarily discrete.]

If each sample Xi has mean µ = 600 and variance σ2 = 40 then the central limit theorem tells
us that the sample mean X is approximately N(µ, σ2/n), so3

X ≈ N(600, 40/1000).

3See the next problem for the proof that E[X] = µ and Var(X) = σ2/n.
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We standardize X to calculate the probability:

P (599.9 < X < 600.1) = P

(
599.9− 600√

1/25
<
X − 600√

1/25
<

600.1− 600√
1/25

)
= P (−0.5 < Z < 0.5)

= 2Φ(0.5)− 1

= 38.30%.

To illustrate what this means, let us assume that each Xi is normal. Then each individual Xi

has a vanishingly small probability of falling between 599.9 and 600.1:

P (599.9 < Xi < 600.1) = P

(
599.9− 600√

40
<
Xi − 600√

40
<

600.1− 600√
40

)
= P (−0.02 < Z < 0.02)

= 2Φ(0.02)− 1

= 1.58%.

This is the effect of dividing the variance by 1000. Even though X and Xi have the same
mean, X is much more concentrated around this mean. Here is a picture:

7. Sample Variance. Let X1, X2, . . . , Xn be a sequence of iid random variables, each with
the same mean µ = E[Xi] and variance σ2 = Var(Xi). We define the sample mean

X =
1

n

n∑
i=1

Xi

and the sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2.

(a) Show that E[X2
i ] = µ2 + σ2.

(b) Show that E[X] = µ and Var(X) = σ2/n and use these to show that

E[X
2
] = µ2 + σ2/n.

(c) Show that
n∑
i=1

(Xi −X)2 =

(
n∑
i=1

X2
i

)
− nX2

.

[Hint: X
∑

iXi = nX
2
.]
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(d) Use parts (a),(b),(c) and the linearity of expectation to show that E[S2] = σ2. This
explains why we use n− 1 instead of n in the denominator of the sample variance.

(a): We use the formula Var(Xi) = E[X2
i ]− E[Xi]

2 to get

E[X2
i ] = E[Xi]

2 + Var(Xi) = µ2 + σ2.

(b): We use the linearity of expectation to get

E[X] = E[(X1 +X2 + · · ·+Xn)/n]

= E[(X1 +X2 + · · ·+Xn)]/n

= (E[X1] + E[X2] + · · ·+ E[Xn]) /n

= (µ+ µ+ · · ·+ µ) /n

= (nµ)/n

= µ.

We use the fact that the Xi are independent to get

Var[X] = Var[(X1 +X2 + · · ·+Xn)/n]

= Var[(X1 +X2 + · · ·+Xn)]/n2

= (Var[X1] + Var[X2] + · · ·+ Var[Xn]) /n2

=
(
σ2 + σ2 + · · ·+ σ2

)
/n2

= (nσ2)/n2

= σ2/n.

Hence we have

E[X
2
] = E[X]2 + Var(X) = µ2 + σ2/n.

(c): First we note that (
n∑
i=1

Xi

)
/n = X

n∑
i=1

Xi = nX,

so that

X
n∑
i=1

Xi = XnX = nX
2
.
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Then we have
n∑
i=1

(Xi −X)2 =
n∑
i=1

(X2
i − 2XXi +X

2
)

=
n∑
i=1

X2
i − 2X

n∑
i=1

Xi + nX
2

=
n∑
i=1

X2
i − 2nX

2
+ nX

2

=
n∑
i=1

X2
i − nX

2
.

(d): Finally, we have

E[S2] = E

[
1

n− 1

n∑
i=1

(Xi −X)2

]

=
1

n− 1
· E

[
n∑
i=1

(Xi −X)2

]

=
1

n− 1
· E

[
n∑
i=1

X2
i − nX

2

]
from (c)

=
1

n− 1
·

(
n∑
i=1

E[X2
i ]− n · E[X

2
]

)

=
1

n− 1
·

(
n∑
i=1

(µ2 + σ2)− n(µ2 + σ2/n)

)
from (a) and (b)

=
1

n− 1
·
(
n(µ2 + σ2)− n(µ2 + σ2/n)

)
=

1

n− 1
·
(
nσ2 − σ2

)
=

1

n− 1
· (n− 1)σ2

= σ2.

Remark: We have shown that the sample variance S2 is an unbiased estimator for the popu-
lation variance σ2, which explains the n − 1 in the denominator. It would me more obvious
to consider the statistic

V =
1

n

n∑
i=1

(Xi −X)2,

but this is a biased estimator for σ2 because V = n−1
n · S

2, and hence

E [V ] =
(n− 1)2

n2
· E[S2] =

(n− 1)2

n2
· σ2 6= σ2.


