1. Let U be the uniform random variable on the interval [2,5]. Compute the following:

$$
P(U<3), \quad P(3<U<6), \quad \mu=E[U], \quad \sigma^{2}=\operatorname{Var}(U), \quad P(\mu-\sigma<U<\mu+\sigma) .
$$

2. Let X be a continuous random variable with the following density:

$$
f_{X}(x)= \begin{cases}c \cdot \sin (x) & 0 \leq x \leq \pi \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of the constant c.
(b) Compute $\mu=E[X]$ and $\sigma^{2}=\operatorname{Var}(X) \rrbracket^{1}$
(c) Compute $P(\mu-\sigma<X<\mu+\sigma)$.
(d) Draw a picture of the whole situation.
3. Mean and Variance of a Normal Density. Let $X \sim N\left(\mu, \sigma^{2}\right)$ and $Z \sim N(0,1)$. In other words, suppose that X and Z have the following densities:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-(x-\mu)^{2} / 2 \sigma^{2}} \quad \text { and } \quad f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} \cdot e^{-z^{2} / 2}
$$

(a) Compute the expected value $E[Z]$. [Hint: Substitute $u=-z^{2} / 2$.]
(b) Compute the second moment $E\left[Z^{2}\right]$ and the variance $\operatorname{Var}(Z)$. [Hint: Use integration by parts with $u=-z$ and $v=e^{-z^{2} / 2}$. You may assume that $\int f_{Z}(z) d z=1$.]
(c) Use parts (a) and (b) to compute $E[X]$ and $\operatorname{Var}(X)$. [Hint: We showed in class that $(X-\mu) / \sigma$ and Z have the same density.]
4. Let $Z \sim N(0,1)$ so that $P(Z \leq z)=\Phi(z)$. Use the attached table to compute the following probabilities:
(a) $P(Z<-0.5)$
(b) $P(0.33<Z<1.25)$
(c) $P(Z>1), P(Z>2), P(Z>3)$
(d) $P(|Z|<1), P(|Z|<2), P(|Z|<3)$
5. De Moivre-Laplace Consider a coin with $p=P(H)=1 / 3$. Suppose that you flip the coin 100 times and let X be the number of times you get heads. Use the de Moive-Laplace theorem to compute the probability

$$
P(30 \leq X \leq 35)
$$

Don't forget to use a continuity correction.
6. Central Limit Theorem. Let $X_{1}, X_{2}, X_{3}, \ldots, X_{1000}$ be a sequence of iid random variables, each with mean $\mu=600$ and variance $\sigma^{2}=40$. Consider the sample mean

$$
\bar{X}=\left(X_{1}+X_{2}+\cdots+X_{1000}\right) / 1000 .
$$

Use the central limit theorem to estimate the probability that \bar{X} falls between 599.9 and 600.1. [Remark: You should not use a continuity correction because the variables X_{i} are not necessarily discrete.]

[^0]7. Sample Variance. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of iid random variables, each with the same mean $\mu=E\left[X_{i}\right]$ and variance $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$. We define the sample mean
$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$
and the sample variance
$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$
(a) Show that $E\left[X_{i}^{2}\right]=\mu^{2}+\sigma^{2}$.
(b) Show that $E[\bar{X}]=\mu$ and $\operatorname{Var}(\bar{X})=\sigma^{2} / n$ and use these to show that
$$
E\left[\bar{X}^{2}\right]=\mu^{2}+\sigma^{2} / n
$$
(c) Show that
$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\left(\sum_{i=1}^{n} X_{i}^{2}\right)-n \bar{X}^{2}
$$
[Hint: $\left.\bar{X} \sum_{i} X_{i}=n \bar{X}^{2}.\right]$
(d) Use parts (a),(b),(c) and the linearity of expectation to show that $E\left[S^{2}\right]=\sigma^{2}$. This explains why we use $n-1$ instead of n in the denominator of the sample variance.

[^0]: ${ }^{1}$ Hint: $\int x \sin (x) d x=\sin (x)-x \cos (x)$ and $\int x^{2} \sin (x) d x=2 \cos (x)+2 x \sin (x)-x^{2} \cos (x)$.

